Evaluation of glass forming ability of alloys

*Anhui CAI, Ye PAN, Guoxiong SUN

(Department of Materials Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, P. R. China)

Abstract: Key step of exploiting a new type BMG (Bulk Metallic Glass) is quickly judging GFA (Glass Forming Ability) of the alloys. The mole melting heats of BMGs are calculated using the weighted averages principle. The reliability and limitation of T_c criterion for GFA are discussed. The reason why T_c of BMGs is larger than 0.5 is discussed. Two new criteria for GFA, ΔH_{mg} and ΔG_{f}, are proposed. GFA sequence of BMGs is calculated using the ΔH_{mg} criterion, the result agrees with that of A. Inoue and the R_i criterion. Furthermore, as an example, the R_i of the alloys developed by Chuang DONG et al is calculated using the ΔH_{mg} and ΔG_{f}. The ascending sequence of these alloys calculated with the ΔH_{mg} criterion agrees with that of Chuang DONG et al. On the contrary, the result by the ΔG_{f} criterion is in contrary with Chuang DONG et al, indicating that the ΔH_{mg} criterion is better and more convenient than the ΔG_{f} criterion. Calculation showed that the optimum ΔH_{mg} is -15.16 kJ/mol.

Keywords: bulk metallic glasses; glass forming ability; weighted averages principle; GFA criterion

CLC number: TG146 Document: A Article ID: 1672-6421(2005)01-0001-06

1. Introduction

Bulk metallic glasses (BMG) have been one of the hotspots in material fields because of their excellent properties in physics, chemistry, optics, magnetism and mechanics. The glass forming ability (GFA) parameters were extensively researched at the point of thermodynamics, kinetics and physical structure. Two initial GFA parameters were the super-cooled liquidus region $\Delta T = T_c - T_a$ (T_a and T_c are the onset crystallization temperature and the glass transition temperature) and the reduced glass transition temperature $T_{rg} = T_a/T_g$ (T_a is the onset-melted temperature). Subsequently, on the base of T_{rg}, P. LU et al. proposed a new parameter, the reduced glass transition temperature, i.e. $T_{rg} = T_a/T_g$ (T_g is the glass transition temperature). Recently, Takeuchi Akira et al. reported a function for multi-component alloys combining ΔH and S/k_B, and successfully obtained two critical values of typical multi-component metallic glasses, i.e. 15 kJ/mol and 0.1 respectively, and found that more negative the ΔH was and the bigger the S/k_B was, the stronger the GFA of the alloys was. In addition, A. Inoue proposed of three empirical rules for BMG. However, those GFA parameters needed to determine many parameters. Among those, some can be obtained only after BMGs have been obtained, and some even cannot be obtained. Therefore, to research criteria quickly and exactly evaluating GFA of the alloys has been a concerned problem.

In this paper, total 35 alloys of 7 groups are used in this study. The reliability and limitation of T_c criterion for GFA are discussed. Two new criteria for GFA, ΔH_{mg} and ΔG_{f}, for the evaluation of the GFA of the alloys are proposed and discussed. And the GFA sequence of BMGs is calculated by using the ΔH_{mg} criterion, and the result agrees with that of A. Inoue's. In addition, as an example, the R_i of the alloys (Zr-Al-Cu-Ni) developed by Chuang DONG et al. is calculated by use of the new criteria. The ascending sequence of GFA of these alloys calculated by the ΔH_{mg} criterion agrees with that of Chuang DONG et al. On the contrary, the result by the ΔG_{f} criterion doesn't accord with that of Chuang DONG et al, indicating that the ΔH_{mg} criterion is better and more convenient than the ΔG_{f} criterion.

2. Physic background and calculation methods

The Gibbs free energy (G) of the super-cooled melt is higher than that of the crystal, so there is a tendency of crystallization in super-cooled melt. The difference in the free energy (ΔG) between solid and liquid is a force of crystallization. The larger the ΔG is, the bigger the force is. The force is a critical factor influencing formation of crystal nucleus and nucleation rate, the critical radius of crystal nucleus, crystal nucleus growth and growth rates from solidification theory point of view. Therefore, the ΔG directly influences the formation of BMG.

According to thermodynamic theory, the Gibbs free
energy of system is expressed as,

\[G = U - TS + PV = H - TS \]

(1)

When one mole melt crystallizes, which leads to the change of \(\Delta G_g \), i.e., the change of chemical potential of system is as follows:

\[\Delta G_g = \Delta H_g - T \Delta S_g \]

(2)

Where, \(\Delta G_g \), \(\Delta H_g \) and \(\Delta S_g \) are the differences for \(G \), \(H \) and \(S \) between solid and liquid when one mole melt crystallizes respectively.

Since the melt and crystal are in equilibrium at melting point \(T_m \), therefore, there is the following expression.

\[\Delta G_{mg} = \Delta H_{mg} - T_m \Delta S_{mg} = 0 \]

i.e.,

\[\Delta S_{mg} = \Delta H_{mg} / T_m \]

(3)

Where, \(\Delta G_{mg} \), \(\Delta H_{mg} \) and \(\Delta S_{mg} \) are the difference of \(G \), \(H \) and 5 between solid and liquid phases when one mole melt crystallizes at the melting point respectively.

When the melt is cooled slightly down under \(T_m \) the crystallization can happen immediately. Because of the small super-cooling, \(\Delta H_{mg} = \Delta H_{ng} \) and \(\Delta S_{mg} \approx \Delta S_{ng} \) are of the adequate approximation. Hence, the difference in the mole free energy of solid and liquid is:

\[\Delta G_s = \Delta H_{mg} - T \Delta S_{mg} = \Delta H_{mg} (T_m - T) / T_m \]

(4)

However, at large super-cooling, supposing that the \(\Delta G \) and the \(\Delta H \) change linearly with temperature \([13,14]\), as the first approximation, the following equation is proposed.

\[\Delta G_g = \Delta H_{mg} \left(\frac{T - T_m}{T_m} \right) \]

(5)

When the melt transforms to the metallic glass, let \(T = T_g \), the expression (5) is rewritten as the following expression,

\[\Delta G_g = \Delta H_{mg} (1 - T_g / T_m) \]

(6)

According to Ziman liquid theory and supposing that the melt is an ideal solution, the \(\Delta H_{mg} \) can be calculated by using the following expression:

\[\Delta H_{mg} = \sum_{i=1}^{n} (x_i \Delta H_{mi}) \]

(7)

Where, \(x_i \) is the mole percent of \(i \)-th component, \(n \) is component number, \(\Delta H_{mi} \) is the mole melting heats of \(i \)-th component.

3. Results and discussion

Total 35 alloys of 7 groups are used in this study. Their critical cooling rates \(R \) \([9-11]\) and calculated \(\Delta H_{mg} \) and \(\Delta G_g \) using above equation \([6]\) are all listed in Table 1. Their average values of the critical cooling rates \(R \) \([9-11]\), \(\Delta H_{mg} \) and \(\Delta G_g \) are also calculated and shown in Table 2.

<table>
<thead>
<tr>
<th>Alloys</th>
<th>(\Delta H_{mg}) [kJ·mol(^{-1})]</th>
<th>(T_m)</th>
<th>(\Delta G_g) [kJ·mol(^{-1})]</th>
<th>(R) [K·s(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(_3)Ni(_3)Nd(_1)</td>
<td>-10.1437</td>
<td>0.57</td>
<td>-2.4862</td>
<td>46.1</td>
</tr>
<tr>
<td>Mg(_3)Ni(_3)Nd(_1)</td>
<td>-10.5113</td>
<td>0.571</td>
<td>-2.5748</td>
<td>30</td>
</tr>
<tr>
<td>Mg(_3)Ni(_3)Nd(_1)</td>
<td>-10.0530</td>
<td>0.553</td>
<td>-2.485</td>
<td>178.2</td>
</tr>
<tr>
<td>Mg(_3)Cu(_2)Y(_1)</td>
<td>-10.8930</td>
<td>0.551</td>
<td>-2.6949</td>
<td>50</td>
</tr>
<tr>
<td>Nd(_3)Fe(_3)Al(_15)</td>
<td>-9.9250</td>
<td>0.617</td>
<td>-2.3454</td>
<td>12</td>
</tr>
<tr>
<td>Nd(_3)Al(_3)Cu(_3)Fe(_5)</td>
<td>-9.7886</td>
<td>0.552</td>
<td>-2.4207</td>
<td></td>
</tr>
<tr>
<td>Nd(_3)Al(_3)Cu(_3)Co(_2)Cu</td>
<td>-9.6976</td>
<td>0.598</td>
<td>-2.3313</td>
<td></td>
</tr>
<tr>
<td>Pd(_3)Cu(_3)Si(_3)</td>
<td>-21.2312</td>
<td>0.602</td>
<td>-5.0869</td>
<td>100</td>
</tr>
<tr>
<td>Pd(_3)Cu(_3)Si(_17)</td>
<td>-21.1687</td>
<td>0.569</td>
<td>-5.1914</td>
<td>125</td>
</tr>
<tr>
<td>Pd(_3)Cu(_3)Si(_15)</td>
<td>-21.0477</td>
<td>0.577</td>
<td>-5.1371</td>
<td></td>
</tr>
<tr>
<td>Pd(_3)Cu(_3)Si(_15)</td>
<td>-20.9187</td>
<td>0.568</td>
<td>-5.1329</td>
<td></td>
</tr>
<tr>
<td>Pd(_3)Cu(_3)Si(_15)</td>
<td>-21.0188</td>
<td>0.585</td>
<td>-5.1028</td>
<td>500</td>
</tr>
<tr>
<td>Pd(_3)Cu(_3)Si(_15)</td>
<td>-20.8827</td>
<td>0.565</td>
<td>-5.1324</td>
<td></td>
</tr>
<tr>
<td>Pd(_3)Cu(_3)Ni(_3)P(_20)</td>
<td>-12.0682</td>
<td>0.69</td>
<td>-2.5814</td>
<td>0.1</td>
</tr>
<tr>
<td>Pd(_3)Cu(_3)Ni(_3)P(_20)</td>
<td>-13.4726</td>
<td>0.585</td>
<td>-3.2708</td>
<td>0.167</td>
</tr>
<tr>
<td>La(_3)Al(_3)Ni(_3)Cu(_10)</td>
<td>-13.1519</td>
<td>0.56</td>
<td>-3.2406</td>
<td>22.5</td>
</tr>
<tr>
<td>La(_3)Al(_3)Ni(_3)Cu(_10)</td>
<td>-12.9136</td>
<td>0.523</td>
<td>-3.2216</td>
<td>35.9</td>
</tr>
<tr>
<td>La(_3)Al(_3)Ni(_3)Cu(_10)</td>
<td>-13.6157</td>
<td>0.521</td>
<td>-3.3979</td>
<td>67.5</td>
</tr>
<tr>
<td>La(_3)Al(_3)Ni(_3)Cu(_10)</td>
<td>-12.9724</td>
<td>0.54</td>
<td>-3.2233</td>
<td>37.5</td>
</tr>
<tr>
<td>La(_3)Al(_3)Ni(_3)Cu(_10)</td>
<td>-13.3856</td>
<td>0.526</td>
<td>-3.3374</td>
<td>34.5</td>
</tr>
</tbody>
</table>
Using the data in Table 1 a three-dimensional graph for ΔG_g, T_g and ΔH_{mg} is shown in Fig.1. It is seen from Fig.1 that when T_g is fixed, ΔG_g increases with the increase of ΔH_{mg}. When ΔH_{mg} is invariable, there exists a minimum position or critical point, $T_g=0.5$. When $0.5 \leq T_g \leq 1$, the absolute value of the ΔG_g decreases with the increase of T_g, which is the forming region of BMG. In addition, it could be the reason why T_g of BMG is larger than 0.5 presently. In addition, the larger the ΔG_g is, the bigger the driving force is for the melt to crystallize. Normally for forming BMG, ΔG_g should be as small as possible, and ΔG_g value reflects the GFA of BMG.

Fig.2 shows the curves between ΔG_g and T_g for two ΔH_{mg}: -1 kJ·mol$^{-1}$ and -2 kJ·mol$^{-1}$ respectively. It is seen from Fig.2, for an alloy with large T_g, a larger ΔG_g can be found for large ΔH_{mg}, its GFA is weaker. This shows that although T_g of the alloy is high, its GFA may not be always strong. T_g has a certain limitation for the GFA.
criterion.

For the six groups (except for Nd-based) of MGF alloys the fitted coefficients for the equations between R_c and ΔH_{mg} or ΔG_g (using regression equation $R_c = A + B_1 X + B_2 X^2$, X represents ΔH_{mg} or ΔG_g) and their minimal values are calculated and shown in Table 3. The relationships between R_c and the three parameters (T_{rg}, ΔH_{mg} and ΔG_g) are shown in Fig.3. It is seen that the relationships between R_c and ΔH_{mg} and ΔG_g are simple parabolic, but the relationships between T_{rg} and R_c is quite complicated, indicating T_{rg} is not a very good GFA criterion.

Table 3 The parameters and fitted coefficients for equations between R_c and ΔH_{mg} or ΔG_g, their Minima for the six sub-groups and those of Zr-Al-Ni-Cu alloys (in bracket)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>A</th>
<th>B_1</th>
<th>B_2</th>
<th>R</th>
<th>Minima (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_c and ΔH_{mg} [kJ/mol]</td>
<td>1304.13</td>
<td>176.19</td>
<td>5.81</td>
<td>0.788</td>
<td>-15.16</td>
</tr>
<tr>
<td>(27133.93)</td>
<td>(2752.75)</td>
<td>(69.82)</td>
<td>(0.992)</td>
<td>(-19.71)</td>
<td></td>
</tr>
<tr>
<td>R_c and ΔG_g [kJ/mol]</td>
<td>1214.97</td>
<td>675.65</td>
<td>91.74</td>
<td>0.743</td>
<td>-3.68</td>
</tr>
<tr>
<td>(14278.82)</td>
<td>(5935.12)</td>
<td>(616.64)</td>
<td>(0.993)</td>
<td>(-4.81)</td>
<td></td>
</tr>
</tbody>
</table>

As shown in Table 3, the two correlation coefficients, R_c, are both larger than 0.74, indicating the regressed equations have relatively good reliability. And the relationships between R_c and the two parameters (ΔH_{mg} or ΔG_g) are similar to one another in Fig.3, which indicates the T_{rg} influences not the tendency but the magnitude of the ΔG_g. It is also shown that the T_{rg} is not a good criterion. Furthermore, since the relationships all present the parabola, and then there is other BMGs whose GFA are better than the BMGs presented. Fortunately, it is testified, recently, by C. DONG et al. [15] developed other Zr-Al-Ni-Cu BMGs with better GFA. And the optimal values are calculated in terms of the fitted equations in Table 3, that of ΔH_{mg} and ΔC_g are -15.16 kJ/mol, -3.68 kJ/mol respectively. It is shown that when ΔH_{mg} is excessive large, it is unfavorable to the formation of BMG. Large ΔH_{mg} reflects the stronger bonding force and the cluster [16] is big but less, and if excessive heats exhausting in the solidification of melt cannot be carried about, obviously it will influence the formation of BMG. On the contrary, less heats leads to small and more clusters even though the exhaustion of heats is easy.

The comprehensive effects above-mentioned result in the decrease of GFA of BMG. And thus, only when ΔH_{mg} is moderate, it is favorable to the formation of BMG. Furthermore, GFA sequences are performed on seven subgroups. According to the R_c, the GFA ascending sequence is Pd-Cu-Si, Mg-based, La-based, Zr-Al-TM, Zr-Ti-TM and Pd-T-TM. According to ΔG_g, that is Pd-Cu-Si, Mg-based, Zr-Al-TM, Pd-T-TM, Zr-Ti-TM and La-based. And according to ΔH_{mg} it will be Pd-Cu-Si, Mg-based, Zr-Al-TM, Zr-Ti-TM, Pd-T-TM and La-based. It is shown that the GFA ascending sequences in three cases agree with that of A. Inoue's [12] except for La-based. If the above-mentioned rules are correct, one can develop more BMGs with better GFA in La-based alloy system. In addition, the GFA of Nd-based was predicted by the use of two above-mentioned criteria, and the results of the predictions are that the GFA of Nd-based is in the vicinity of that of Mg-based. And furthermore, J. XU et al. [17] recently, reported Mg$_{65}$Cu$_{20}$Zn$_{5}$Y$_{10}$ BMGs with thickness up to 6 mm and its R_c may reduce to 25 K/s. Particularly, the fitted equations between R_c and the parameters (ΔH_{mg} or ΔG_g) for Zr-Al-Ni-Cu alloys are tabulated in Table 3 (in bracket) and the corresponding relationships are shown in Fig.4 respectively. The minimum, i.e., optimum value, is -19.71 kJ/mol for the ΔH_{mg} and -4.81 kJ/mol for the ΔC_g. And then, five Zr-Al-Ni-Cu BMGs [15] (shown in Table 4) developed recently are examined by means of ΔH_{mg} and ΔG_g criteria.
respectively. As in Table 4 and Fig.4, the ΔH_m and ΔG_s values are in the vicinity of -19.71 kJ/mol and -4.81 kJ/mol, which indicates that the GFA of these alloys is strong. Furthermore, as shown in Table 3, the correlation coefficients of the equation for Zr-Al-Ni-Cu base system between R_c and the parameters (ΔH_m or ΔG_s) are both larger than 0.99, indicating that these relationships are fairly reliable. And thus, the R_c of the alloys developed by C. DONG et al[15], is calculated (shown in Table 4). From ΔH_m criterion, the GFA ascending sequence is Zr$_{65.5}$Al$_{5.6}$Cu$_{22.4}$Ni$_{6.5}$, Zr$_{65.3}$Al$_{6.5}$Cu$_{20}$Ni$_{8.2}$, Zr$_{65.5}$Al$_{7.5}$Cu$_{17.5}$Ni$_{10}$, Zr$_{64.8}$Al$_{8.3}$Cu$_{1.55}$Ni$_{11.4}$, Zr$_{64.5}$Al$_{9.2}$Cu$_{13.1}$Ni$_{13.2}$, Zr$_{63.8}$Al$_{11.4}$Cu$_{17.2}$Ni$_{7.6}$.

Obviously, Inoue alloy, i.e. Zr$_{65}$Al$_{7.5}$Cu$_{17.5}$Ni$_{10}$, don't own highest GFA in these alloys. This is in agreement with C. DONG et al.

However, from the ΔG_s criterion, the ascending sequence is contrary with the result of the ΔH_m criterion, indicating the ΔH_m criterion is better and more convenient than the ΔG_s criterion. Furthermore, it could be predicted that there will be another Zr-Al-Cu-Ni base alloys characterized by higher GFA.

Table 4 The calculated parameters (ΔH_m and ΔG_s) and predicted R_c for the alloys developed by Dong Chuang et al.

<table>
<thead>
<tr>
<th>Alloys</th>
<th>ΔH_m [kJ/mol]</th>
<th>ΔG_s [kJ/mol]</th>
<th>R_c [K/s]</th>
<th>R_c [K/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr${65}$Al${5}$Cu${12.8}$Ni${6}$</td>
<td>-19.7863</td>
<td>-4.9342</td>
<td>0.39</td>
<td>6.67</td>
</tr>
<tr>
<td>Zr${65}$Al${5}$Cu${12.8}$Ni${6.2}$</td>
<td>-19.8218</td>
<td>-4.9253</td>
<td>0.53</td>
<td>5.38</td>
</tr>
<tr>
<td>Zr${65}$Al${5}$Cu${12.8}$Ni${11.4}$</td>
<td>-19.8741</td>
<td>-4.8655</td>
<td>0.572</td>
<td>-0.73</td>
</tr>
<tr>
<td>Zr${65}$Al${5}$Cu${12.8}$Ni${13.2}$</td>
<td>-19.9049</td>
<td>-4.8551</td>
<td>0.578</td>
<td>-1.35</td>
</tr>
<tr>
<td>Zr${65}$Al${5}$Cu${12.8}$Ni${17.2}$</td>
<td>-19.9646</td>
<td>-4.8599</td>
<td>0.582</td>
<td>-1.25</td>
</tr>
</tbody>
</table>

Note: R_{ci} and R_{gi} are the critical cooling rates calculated by the parameters of the ΔH_m and ΔG_s respectively.

References

[13] S. C. Glade, R. Busch, D. S. Lee and W. L. Johnson. Thermodynamics of Cu_{47}Ti_{34}Zr_{11}Ni_{8}, Zr_{52.5}Cu_{17.9}Ni_{14.6}Al_{10}Ti_{5} and Zr_{50}Cu_{15}Ni_{12}Al_{10}Mb; bulk metallic glass forming alloys [J]. J. APPL. PHYSICS, 2000, 87(10): 7243-7248

