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1 Introduction
Over the years, squeeze casting technology has 
progressed from small to large-scale commercial 
applications. It has been employed in the production 
of varieties of products ranging from household items 
to high integrity structural components. This process 
is suitable for small components weighing up to 30 kg. 
Currently, parts such as brake calipers, suspension arms, 
pistons, connecting rods, and automotive wheels, etc., 
can be produced by squeeze casting [1-3]. The squeeze 
casting has been successfully used to fabricate metallic 
alloys, bimetals and metal matrix composites (MMC) [4-9].
Squeeze casting process involves the solidification of 
molten metal in a preheated die under squeeze pressure. 
Substantial material saving, the ability to deal with a wide 
range of materials, and near-net-shape fabrication are the 
significant benefits of squeeze casting process [2, 10-12]. 
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The applied squeeze pressure which is less than forging 
pressure causes rapid solidification cooling rate due to 
higher heat transfer rate, reduction in gas and bubble 
nucleation, and reduction in solidification time which 
results in refine grain structure and enhanced mechanical 
properties of the castings [3, 13-15]. 

Squeeze casting method can overcome the limitation 
associated with other liquid metallurgy methods such as 
gravity casting, permanent mould casting, etc. [13,16-18].
Squeeze cast components are characterized by minimal 
porosity, enhanced mechanical properties, refined grain 
microstructure, better surface finish, good dimensional 
accuracy, and improved wear properties because of 
the impact of squeeze pressure [2, 14, 19, 20]. Some of the 
drawbacks associated with this technology include 
micro-segregation, shape and size limitation, high 
tooling cost and short die life span [5, 21]. Squeeze casting 
is also adaptable for semi-solid metal processing. 
Compared to conventional squeeze casting, the semi-
solid squeeze cast (SSSC) components exhibit improved 
mechanical properties and microstructural features [22]. 
This improvement can be attributed to the nucleation 
of refined grains at the semi-solid temperature and the 
uniform distribution of interfacial precipitates at grain 
boundaries due to the squeezing pressure. Dao et al. [23] 
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reported that the connecting rod fabricated by SSSC exhibited 
higher tensile strength and ductility than the conventional 
squeeze casting. To further enhance the mechanical properties 
and microstructural features of squeeze cast components, 
secondary processing such as T4, T5, and T6 heat treatment 
and extrusion is performed on the cast components [24-26]. 
Squeeze cast components subjected to heat treatment followed 
by an artificial aging process exhibit higher performance 
compared to as-cast components [6, 27, 28]. 

The matrix alloys for squeeze casting determine the 
processing parameters [5], and the squeeze casting's quality 
depends on optimum process parameters [29-31]. Parameters 
such as squeeze pressure, pressurization velocity, melt/pouring 
temperature, die temperature and their effects on microstructure 
and mechanical properties of castings have been extensively 
investigated [32-40]. For example, Wang et al. [41] reported that 
the high quality of the squeeze cast aluminum alloy scroll can 
be obtained using the semi-solid squeeze casting process under 
optimal parameter values. Hence, many designs of experiment-
based investigations have been conducted to determine the 
optimal squeeze casting process parameters [31, 42-44]. 

This paper presents the outcomes of important past work 
conducted to examine the performance of squeeze casting 
technology. The effects of various process parameters on 
mechanical properties, microstructure, and porosity when 
producing various parts and components from metal alloys and 
composites were discussed.

2 Squeeze casting process parameters 
used in previous studies 

Squeeze casting process parameters such as squeeze pressure, 
squeeze velocity, pressure duration, melt/pouring temperature, 
die temperature, and percentage of reinforcement volume can 
significantly impact the quality of squeeze cast parts [31, 41, 45, 46].
For instance, Patel et al. [47] reported that squeeze pressure, die 
and pouring temperature significantly influenced the wear rate 
of squeeze cast components. Senthilkumar et al. [17] observed 
that squeeze pressure and die temperature had a more substantial 
influence on the quality of squeeze cast metal matrix composites. 
From Table 1, it can be inferred that the optimal range of the 
squeeze casting process parameter values for both aluminum and 
magnesium matrices include: squeeze pressure of 100-125 MPa,
pouring temperature of 700-800 °C, die temperature of 
130-250 °C, and pressure duration of 45-90 s.  

2.1 Effect of squeezing pressure on solidification 
Squeeze pressure is one of the most significant parameters of 
squeeze casting [43, 44]. The squeeze pressure stimulates inter-
dendritic flow during solidification. As the squeeze pressure 
increases, the inter-dendritic pores reduce, thereby minimizing 
porosity [51]. Furthermore, as the melt solidifies under increased 
pressure, supercooling occurs, resulting in microstructure with 
refined and uniformly distributed grain structure [15, 48, 61]. The 
effects of squeeze pressure on melt solidification can be further 

explained using Clausius-Clapeyron equation [5]. The recast 
equation is expressed in Eq. (1):

(1)

(2)

where ∆Hf is the latent heat of fusion, Po and R are constants, 
P is the applied pressure, and Tf is the freezing point. As the 
squeeze pressure increases, the solidification cooling rate 
increases, resulting in supercooling and grain refinement.

During the squeeze casting process, the pressure forces the 
melt to fill the die cavity, thereby preventing shrinkage cavities. 
As the pressure increases, gas and bubble nucleation becomes 
difficult, resulting in minimal gas porosity. However, when the 
squeeze pressure becomes unreasonably high, microstructural 
damage becomes inevitable [13, 19, 35]. Yong et al. [62] reported that 
squeeze pressure of 60-100 MPa is enough to reduce porosity in 
fiber-reinforced magnesium matrix composites. Pressure beyond 
100 MPa will result in fiber clustering and damage. The squeeze 
pressure can also alter the rate of solidification. According to 
Chvorinov's rule, the total solidification time for casting is 
given as:

where TTs is the total solidification time (min), Cm is the mould 
constant (min·mm-2), V is the volume of the casting (mm3), 
A is the total surface area of the casting (mm2), and n is an 
exponent equal to 2 [63-66].

A study to compare the total solidification time of squeeze 
casting with other conventional castings has been conducted. 
Maeng et al. [67] reported a solidification time of 60 s for gravity 
cast aluminum alloy billet (B390) and 14.56 s for squeeze cast, 
respectively. During the solidification process in gravity casting, 
it was discovered that an air gap due to thermal contraction was 
created between the melt and die wall. The air gap caused a 
change in heat transfer mode from conduction to radiation and 
convection, resulting in a decrease in heat transfer coefficient 
and consequently increase of solidification time. In squeeze 
casting, the applied pressure increases the surface contact area 
between the melt and the die wall, resulting in rapid heat transfer 
or a higher cooling rate and a shorter solidification time.

Squeeze pressure duration varies depending on the processing 
condition. Different pressure durations have been used for 
various studies, as shown in Table 1. It can be inferred that a 
pressure duration of 15-120 s may be adequate to produce a 
high-quality casting. According to the report by Zhong et al. [68], 
casting shape and section thickness are determinants of pressure 
duration. Other studies reported that pressure duration depends 
on the length of time the punch can travel into the melt before 
complete solidification [69, 70].

The grain size of alloys and composites may be impacted by 
squeeze pressure. As reported by Han et al [71], the grain size 
of magnesium alloy reduces as the squeeze pressure increases. 
However, excessive pressure may coarsen the grains. This 
finding is consistent with other studies [18, 27, 55]. Furthermore, 
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Alloy/
Composite

Processing parameters

Ref.Squeeze 
pressure
(Ps, MPa)

Pressure 
equipment

Pouring 
temperature 

(Tp, °C)

Die 
temperature

 (Td, °C)
Pressure 

duration (s)
Optimal value

Ps, Tp, Td

LM6/10%(SiC+Al2O3) 0-120 100 t hydraulic press 720 120-130 60 120, 720, 130 [48]

Al-Zn-Mg-Cu 160 3,200 kN 
hydraulic press 660-720 250 120 - [36]

Al-Si 0-150 150 t hydraulic press 650-750 250 30 125, 700, 250 [49]

LM24/SiCp/CSA 100-200 40 t hydraulic press 675-715 200-300 45 - [31]

2124 Al&
2124 Al/10SiCp

0-120 150 t hydraulic press 715 120-130 120 100, 715, 130 [50]

AZ91-2%Ca 83-111 - 700-800 150-250 - 111, 800, 200 [51]

A356+SiC 40-120 25 t hydraulic press 800-900 80-250 20-60 120, 850, 250 [17]

Al+B4C 0-150 - 730 350 60 - [52]

AM50 40-120 1,500 t Buhler 
SC 10/150 machine 740 200-250 - - [53]

2024 Al (wrought) 0-70 Hydraulic press 750 250 - [12]

LM13 0-211 100 t hydraulic press 630-780 150-300 100, 730, 200 [14]

AA2024 0-140 - 700-800 200 - 100, 750, 200 [54]

2017A 0-100 Hydraulic press 750 250 - 100, 750, 250 [55]

Al6Si0.3Mg 0-160 60 t hydraulic press 750 250 120 100, 750, 250 [24]

AA6061 0-105 30 t hydraulic press - 200 15 - [32]

A6061/SiC 100 Hydraulic press 800 300 - - [56]

A356/SiC 0-75 1,000 kN press 670 200 30 - [19]

ZAX12405 0-120 80 t hydrostatic press 620-680 250 20-40 120, 650, 250 [45]

Al/SiC 80 600 kN hydraulic press 700 300 - [57]

AX51 3-90 75 t vertical 
hydraulic press 760 300 - - [58]

HMMC Al alloy 95-105 - 650-800 150-250 15-20 -  [29]

Mg-Sn/HA 150 40 t hydraulic press 820 300 60 - [59]

Al/Al2O3 100 - 700 250 45 [60]

CSA = Coconut shell ash, HA = hydroxyapatite 

Masoumi [58],  and Raji et al. [49] suggested that the effectiveness 
of squeeze pressure may depend on the aspect ratio of the 
casting geometry. However, more information is needed to 
verify this claim as limited study exists in this area.

2.2 Effects of pouring and die temperatures 
on solidification 

Optimal pouring and die temperatures conduce to high-quality 
castings [72]. It is therefore essential to select appropriate pouring 
and die temperatures to avoid casting defects. Too low pouring 
and die temperatures will cause:

(i) Low fluidity or high viscosity of the melt, which makes it 
very difficult for dies with narrow cavities to be filled [51].

(ii) Early solidification, especially for alloys with a short 

freezing range. Thereby making squeezing difficult, resulting 
in coarse grain structure [69, 73]. 

The high pouring and die temperatures will cause:
(i) Shrinkage and gas porosity. Increased pouring temperature 

increases gas nucleation in the melt thereby creating more 
gaseous holes [54].

(ii) Increase of thermal stress and hot crack. Increased 
temperature causes thermal expansion and contraction in dies 
resulting in cracks and shortened the die life [54].

In deciding the right pouring temperature for squeeze casting, 
two key factors should be considered: the melting temperature (Tm) 
of matrix and the solidification range [13, 74, 75]. The solidification 
range of melt is the gap between the liquidus and the solidus. 
The solidification range could be short or long depending on 

Table 1: Squeeze casting process parameters used for different studies
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matrix, ρr is the density of reinforcement, and vr is the volume 
fraction of reinforcements [18].   

2.4 Effects of processing parameters on 
microstructure 

The microstructure of the squeeze cast component influences its 
physical and mechanical properties, and therefore determines 
the application of the alloy. Microstructural features such as 
grain size, shape, distribution and orientation can be modified 
during fabrication to produce components with more improved 
mechanical properties (tensile and yield strength, elongation, 
and hardness). In the squeeze casting process, application of 
squeeze and holding pressure results in a stronger interfacial 
bond between the matrix and reinforcement. Most importantly, 
the squeeze pressure facilitates a rapid solidification cooling 
rate which results in a refined and homogeneous grain structure, 
and consequently improves the mechanical properties [80-86]. As 
illustrated in Fig. 1, increasing the squeeze pressure decreases 
the dendrite arm spacing and grain size of the A356 aluminum 
alloy. The grains shown in Fig. 1(d) are more refined and 
homogeneously distributed than those in Figs. 1(a)-(c) due to 
the impact of higher pressure. The squeeze pressure can also 
increase the particle-to-particle surface contact area, thereby 
reducing pore spaces in the microstructure.

Dendrite arm spacing is one of the essential features for 
determining the microstructural characteristics of casting 
alloys. Murthy et al. [87] discovered that the rapid cooling rate 
of the mould was responsible for the refinement of grains and 
secondary dendrite arm spacing (DAS), resulting in improved 
mechanical properties of the cast aluminum alloy. Cruz et al. [88]

observed that the strength and percentage elongation of the 
Al-Sn and Al-Si alloys increased as the dendrite arm spacing 
decreased. Similarly, Zhang et al. [89] reported a decrease in 
the tensile strength and ductility of cast A356 alloy as the 
secondary dendrite arm spacing increased. The rapid cooling 
rate decreases the dendrite arm spacing, resulting in refined 
and evenly distributed grains. The relationship between 
secondary dendrite arm spacing (SDAS) and cooling rate can 
be explained mathematically using the classic solidification 
theory expressed by Eq. (5) [90, 91]:

(3)

(5)

the alloy; this is why superheat (Ts) is required. Previous studies 
recommended Ts to be 10-100 °C for aluminum and magnesium 
alloys and 30-150 °C for copper alloys and steels. The lower 
limit of superheat is applied to alloys with a long solidification 
range, while the upper limit is applied to alloys with a short 
solidification range [75].       

2.3 Effects of processing parameters on 
density and porosity 

Low density and high porosity are characteristics of conventional 
castings [18]. These two metallurgical features are inversely 
related, low porosity results in high density. Porosity in squeeze 
casting is a defect that can adversely affect the mechanical 
properties of casting. It is caused by shrinkage cavities, gas holes, 
or high-volume ceramic reinforcement [39, 54, 76]. Squeeze casting 
parameters such as squeeze pressure, pouring temperature, and 
ceramic reinforcement volume can impact density. The applied 
pressure increases the compactness of the melt, thereby reducing 
micropores in the microstructure [39]. High temperature speeds 
up the rate of metallic particle diffusion to fill pore spaces. 
However, extreme high temperature results in gas holes in the 
microstructure [54]. The simultaneous application of optimal 
squeeze pressure and pouring temperature reduces micropores 
in the microstructure and increases the density of the casting. 

Ceramic reinforcements are porous, therefore, high volume 
ceramic reinforcement increases porosity in squeeze cast 
composites. Raji and Khan [49] discovered that the highest 
density value of Al-8%Si alloys can be obtained at an optimal 
pouring temperature of 700 °C and a squeeze pressure of 
125 MPa. In a similar study, Jahangiri et al. [54] reported that 
almost no micropores were discovered in the squeeze cast 
aluminum alloy at a pouring temperature of 750 °C and a 
squeeze pressure of 100 MPa [21, 77]. Maleki et al. [14] reported 
a maximum density value of aluminum alloy (LM13) at a 
squeeze pressure of 115 MPa, a pouring temperature of 730 °C,
and a die temperature of 200 °C. An increase in pressure 
beyond 115 MPa had no significant effect on the density. In 
another important study to investigate the effect of porosity on 
the coefficient of thermal expansion, Dong et al. [19] observed 
that increasing squeeze pressure decreases porosity, increasing 
the coefficient of thermal expansion (CTE) of the A356/SiC 
composite. Suggesting that porous alloys and composites have 
low CTE and, as a result, have higher resistance to thermally 
induced stress [39, 78, 79].  

Mathematically, the porosity ( ) of squeeze cast parts can be 
determined using Eq. (3):

SDAS=B(CR)-β

where ρE is the experimental density of the squeeze cast part, 
ρth is the theoretical density [76]. For composites, theoretical 
density can be determined using the rule of mixtures as given 
in Eq. (4):

where ρm is the density of matrix, vm is the volume fraction of 

    = 1 - ρE/ρth

where CR is the cooling rate, and B and β are constants to be 
determined.

Several studies have reported a reduction in SDAS as squeeze 
pressure increases, which agrees well with Eq. (5) [50, 51, 92].
However, this is contrary to the findings of Han et al. [71], which 
reported an increase in SDAS as pressure increased. Han et al. [71]

reported two categories of cooling solidification rates for the 
squeeze cast AZ91D magnesium alloy: average cooling rate 
of solidification and the cooling rate at which the primary 
phase grows with the maximum rate. As the squeeze pressure 
increases, the average cooling rate of solidification increases 
while the cooling rate at which the primary phase grows with the 
maximum rate decreases, the SDAS increases. Whereas in other 
studies, as the squeeze pressure increases, the average cooling 

(4)ρth = ρmvm + ρrvr
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Fig. 2: SEM micrograph of Al6061 reinforced with 1wt.% (a, b), 3wt.% (c, d) nano Al2O3 by ultrasonic 
assisted squeeze casting (a, c) and stir casting (b, d) [94] 

Fig. 1: Micrograph of squeeze cast aluminum alloy (A356) with squeeze pressure of 2.5 MPa (a), 3 MPa (b),  
3.5 MPa (c), and 4 MPa (d) [86]

rate of solidification increases, resulting in a decrease in SDAS. 
More investigations are required to substantiate this finding.

The micrographs of squeeze cast and stir (gravity) cast 
aluminum composites are shown in Fig. 2. It can be seen that 
compared to Figs. 2(b, d), the microstructural features (grain size, 
boundary, distribution) of Figs. 2(a and c) are more improved 

due to the effect of squeeze pressure [93]. Increasing the squeeze 
pressure increases the cooling rate, resulting in the nucleation 
of more refined grains and decrease of dendrite arm spacing. 
Furthermore, the absence of applied pressure in the stir casting of 
Figs. 2(b, d) decreases the cooling rate, resulting in an extended 
dendrite arm spacing at the grain boundary. Figure 2 also reveals 

(a) (b)

(c) (d)

(a) (b)

(c) (d)

'

'
'

'
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that the nano alumina (Al2O3) reinforcement is homogenously 
distributed over the aluminum matrix in both the squeeze casting 
composites and the stir casting composites due to the efficiency 
of the mechanical stirrer [84, 94]. 

In squeeze casting, interfacial compound formation/precipitations 
are likely due to interfacial reaction in the microstructure, as 
shown in Fig. 3. Such precipitations may have positive or 
adverse effects. Some precipitations distribute in the grains 

and grain boundaries, enhancing grain structure and impeding
dislocation motion [Fig. 3(a)]. While some result in particle 
segregation that can degrade the microstructure and weaken 
the mechanical properties [Fig. 3(b)]. As reported in literature, 
undesirable precipitations can be prevented either by coating the 
secondary phase with element such as copper powder or by rapidly 
applying the squeeze pressure on the melt so as to increase the 
solidification rate and decrease interfacial reaction time [95-98].

Fig. 3: Microstructures of aluminum 6061 alloy wheel spoke at zones without (a) and with (b) segregation [98]

2.5 Effects of squeeze casting parameters on 
mechanical properties 

2.5.1 Strength and ductility  

The higher strength and ductility of squeeze cast components 
can be achieved through an appropriate selection of 
optimal parameters (i.e., pressure and temperature) and the 
homogeneous distribution of the reinforcing/alloying particles 
over the matrix. More so, heat treatment can also impact on the 
strength and ductility of squeeze cast components [83, 99, 100]. The 
particle segregation results in defective microstructure, which 
decreases the strength and percentage elongation of squeeze cast 
components. Meng et al. [98] reported that the particle segregation 
at the R-joint of squeeze cast aluminum 6061 alloy wheel 
spokes was due to the slow solidification rate. Suggesting that 
the applied squeeze pressure was not high enough at the R-joint, 
thereby making the heat transfer rate very slow at that point. 
Increasing the squeeze pressure will cause a rapid solidification 
cooling rate resulting in a decrease in the interfacial reaction 
time, preventing unwanted precipitations and particle 
segregation. Christy et al. [60] reported that the best value of the 
tensile strength of aluminum matrix composites was a result 
of the effect of optimal process parameters such as a suitable 
squeeze pressure, pressurizing velocity, pouring temperature, 
die temperature, and the efficiency of the mechanical stirrer 
(suitable stirring speed and time). In another study, Zhu et al. [84]

reported that the optimal mechanical properties (strength, 
ductility, and modulus of elasticity) of aluminum 6082 matrix 
composites reinforced with SiCp and fabricated via squeeze 
casting can be obtained when the SiCp percentage concentration 
was 2wt.%. Further increase of SiCp percentage resulted in a 

decrease in mechanical properties. This is because increasing 
the percentage of ceramic reinforcement increases porosity due 
to the porous nature of ceramic materials, and porosity increases 
brittleness in metallic alloys and composites. It has been reported 
that the reinforcement weight percentage should be no more 
than 10wt.% to obtain the optimal strength and ductility of metal 
matrix composites [56, 58, 101, 102]. Fan et al. [93] reported the tensile 
strength of aluminum alloy (Al-Zn-Mg-Cu) increases as the 
squeeze pressure increases. Comparison between the gravity 
casting and squeeze casting aluminum alloy showed that gravity 
cast aluminum alloy exhibited lower strength than squeeze 
cast aluminum alloy [84,103]. The higher strength of the squeeze 
cast aluminum alloy is caused by the pressurized solidification, 
which reduces gas and shrinkage porosity. Wang et al. [104] and 
Souissi et al. [55] reported a maximum increase in the strength 
and ductility of Mg-xY-6xZn magnesium (where x=0.5%, 0.7% 
and 1.0%) and 2017A aluminum alloys at a squeeze pressure 
of 100 MPa, suggesting that the squeeze pressure of 100 MPa 
is optimal or most suitable in preventing grain clustering, 
damage and coarse grain nucleation in contrast to a very high 
pressure [48, 50, 105].  

As illustrated in Fig. 4, the highest value of the tensile 
strength and percentage elongation of the 2A50 aluminum 
alloy scrolls after T6 heat treatment are at a squeeze pressure 
of 100 MPa, and casting temperature of 600 °C. Increasing 
the squeeze pressure beyond 100 MPa decreases the strength 
and percentage elongation. Moreover, the microstructural 
examination of the aluminum alloy scroll revealed that the 
best strength and percentage elongation values were obtained 
when the grains were well refined and uniformly distributed. 
Furthermore, it was also reported that the tensile strength and 



CHINA  FOUNDRYSpecial Review

Fig. 4: Effects of squeeze pressure on tensile strength 
and elongation of 2A50 aluminum alloy scrolls 
casting at 600 °C [106]

Fig. 5:  Effect of squeeze pressure and pouring temperature 
on the hardness of aluminum alloy [111] 

yield strength of the semi-solid squeeze cast wrought aluminum 
alloy scroll improved from 286±7 MPa to 386±8 MPa after 
the T6 heat treatment; however, the ductility decreased from 
12.3%±0.4% to 7.6%±0.5% [106].

2.5.2 Hardness  

Alloys and composites have to be harder for use in cutting tool 
production and other wear resistant applications. Generally, the 
hardness of materials can be increased through reinforcement 
with hard ceramic materials such as SiC, Al2O3, TiB2, etc., and 
alloying and heat treatment. In squeeze casting, homogeneous 
distribution of reinforcing or alloying particles over the matrix with 
optimal processing parameters can increase hardness [34, 49, 107, 108].
For example, the maximum hardness value of squeeze cast 
Mg/B4C composite was achieved at squeeze pressure of 120 MPa, 
die temperature of 200 °C, and pouring temperature of 800 °C [109].
In another study by Senthil et al. [110], it was discovered that the 
hardness of A356/Al2O3/SiC/Gr composites varies due to the 
variation of the reinforcement volume percentage. The best 
value of hardness was obtained when the reinforcement volume 
was 3wt.% Al2O3/3wt.% SiC/3wt.% Gr. Further increase in 
reinforcement volume percentage resulted in a decrease in 
hardness. 

As illustrated in Fig. 5, the highest hardness value of the 
Al-6.7% Cu aluminum alloy was at a pouring temperature 
of 710 °C and squeeze pressure of 7.5 MPa. Simultaneous 
application of optimal squeeze pressure and pouring temperature 
refined the grain structure and promoted a stronger interfacial 
bond between the matrix and the alloying particles, resulting 
in increased hardness. Extreme high temperature results in 
coarse grain structure and excessive pressure causes particle 
damage, leading to reduced hardness [111]. Studies revealed 
that the addition of Sn to Mg/HA composites and the increase 
of Si concentration in Al-Si-Cu alloy resulted in an increased 
hardness [59, 112]. A key consideration for improved hardness is 
the homogeneous distribution of the alloying and reinforcing 
phases in the matrix.

The porosity in squeeze cast parts decreases hardness. 
Ceramic reinforcements are inherently porous; therefore, 
increasing the reinforcement volume percentage of ceramic in 
metal matrix composites increases porosity, thereby decreasing 
hardness. Furthermore, particle segregation in the microstructure 

becomes inevitable at high volume percentage of reinforcement, 
also resulting in decreased hardness [76, 110, 113, 114].

2.5.3 Wear  

The rate of wear is dependent on the type of material, sliding 
velocity, distance and wear load [115]. The wear resistance of 
alloys and composites fabricated through squeeze casting is 
higher than gravity casting [40, 107]. This may be due to the squeeze 
pressure which promotes a stronger interfacial bond, decreases 
pore size and micro-cracks. Furthermore, the wear resistance 
of metal matrix composites is higher than the matrix alloy due 
to the reinforcements, namely, fly ash, SiC, Al2O3 to the matrix 
alloy in a controlled amount [56, 116]. Figure 6(a) [117] shows the 
micrograph of the worn surfaces of an A390 aluminum alloy 
fabricated via gravity die casting. The wear mechanism is peeling 
delamination, a phenomenon associated with parts having softer 
surfaces. Figures 6(b, c) [117] show the SEM micrographs of 
worn surfaces of aluminum matrix composites Al/(1, 4)wt.% 
SiC/1wt.% Gr/1wt.% MoS2 fabricated via squeeze casting. The 
addition of SiC, Gr, and MoS2 reinforcements to the aluminum 
alloy matrix enhanced the tribological properties resulting in 
higher wear resistance [29]. The dominant wear mechanism for the 
squeeze cast aluminum composites with mixed layer surfaces, as 
shown in Figs. 6(b, c), is abrasive wear [50].

2.5.4 Fracture  

Fracture modes include ductile, brittle or mixed. Generally, pure 
metals are ductile fracture, having facture surfaces characterized 
by dimple colonies of refined grains [55]. As the percentage 
volume fraction of the primary phase decreases, the ductility 
decreases, indicating the increase in porosity and brittleness. 
Increasing the squeeze pressure increases the compactness of 
the melt, resulting in increased ductility of the squeeze casting 
alloys [58, 118]. Figure 7 shows the SEM fractography of hybrid 
reinforced aluminum composite Al/SiC/Gr/MoS2 fabricated 
via squeeze casting. The presence of elongated small dimples 
of refined grains, micropores, and tear ridges in Fig. 7(a) 
indicates that the aluminum-based composite absorbed some 
degree of energy before fracture. It also shows the ductile-
brittle mixed fracture behavior. Furthermore, Fig. 7(b) shows 
features of cleavages, micro-cracks, a small number of dimple 
colonies of coarse grains, and pores, indicating also a ductile-
brittle fracture. This may be due to the different concentration 
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Fig. 6: SEM micrographs of the worn surface of die casting A390 aluminum alloy (a), squeeze casting 
Al/4wt.% SiC/1wt.% Gr/1wt.% MoS2 (b), and squeeze casting Al/1wt.% SiC/1wt.% Gr/1wt.% MoS2 (c) [117]

Fig. 7: SEM fractography of hybrid aluminum matrix composites Al/SiC/Gr/MoS2 [117]

of SiC, Gr, and MoS2 reinforcements in the aluminum alloy 
matrix which resulted in the different degrees of porosity and 
brittleness [119].

3 Summary
This paper presented a review of past works on the squeeze 
casting of metals and composites with special focus on the 
effect of process parameters on mechanical properties and 
microstructure of the cast parts. It is concluded that the squeeze 
casting is a mature process and can be used for the production 
of many alloys and composites. These squeeze cast products 
are characterized by very little or no porosity, high density, 
good microstructural features, and mechanical properties. 
Aluminum and magnesium alloys are the two most widely 
used metallic alloys for squeeze casting. Squeeze pressure, 
pressurization velocity and dwell time, pouring temperature, 
die temperature, superheat, and reinforcement percentage 
are found the most influential parameters in squeeze casting. 
The matrix material is also an important factor that needs to 
be considered to confirm the process parameters. For both 
aluminum and magnesium alloys, optimal parameters are 
squeeze pressure of 100-125 MPa, pouring temperature of 
700-800 °C, die temperature of 130-250 °C, and pressure 
duration of 45-90 s. Future research is required to investigate 
the solidification temperature range of alloys and composites 
to determine the right superheat for casting. The knowledge 
of superheating will help prevent premature solidification 
and overly protracted solidification time which both have 
undesirable effects on squeeze cast parts. Furthermore, the 

effectiveness of squeeze pressure is somewhat dependent on 
the aspect ratio of cast geometry, more future investigations 
are required to establish this finding.
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