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1 Introduction
With the construction of a new type of power system 
and the transition of clean and low-carbon energy, there 
is an urgent requirement for lightweight aluminum and 
aluminum alloy conductor materials with excellent 
comprehensive properties. For example, aluminum alloy 
conductor materials require not only high conductivity 
to reduce electrical loss rates, but also high strength to 
effectively withstand extreme weather conditions [1]. 
Compared with pure aluminum, the strength of Al-Mg-Si
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alloy (a typical conductor material) is significantly 
enhanced, but the electrical conductivity is decreased 
seriously [2-5]. The contradiction between electrical 
conductivity and strength is the key problem that 
limits its wide application. In general, the electrical 
conductivity of alloy is very sensitive to the solute atoms, 
which usually intensify the electron scattering, therefore, 
leading to a reduction in conductivity [6-9].

To increase strength and electrical conductivity of 
Al-Mg-Si alloys, researchers have made a lot of 
efforts [10-12]. Karabay [10] designed a modification method, 
combining the AlB2 addition with artificial aging treatment, 
to promote the concurrent enhancements of the strength 
and electrical conductivity of 6201 alloy. Khangholi et al. [11]

proposed a strategy for manufacturing Al-Mg-Si alloy, 
with a superior strength of 369 MPa and an acceptable 
conductivity of 53% IACS, by combining the natural 
aging with pre-aging treatment. Zheng et al. [12] found 
that it is a feasible method to improve the mechanical 
properties and electrical conductivity of Al-Mg-Si alloys 
by combining trace Ca, Mn addition with solution and 
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aging treatment. According to these studies, the improvement 
of electrical conductivity of Al-Mg-Si alloy mainly relies on 
subsequent heat treatment, while the mechanical properties 
of cast Al-Mg-Si alloy enhance at the expense of electrical 
conductivity [13].

Rare earth alloying is an effective method to improve 
the solidification structure and properties of alloy. In recent 
years, the use of rare earth to regulate the microstructure and 
properties of aluminum alloys has been widely concerned [13-20]. 
It is indicated that rare earth elements have significant 
potential in improving the microstructure and properties of 
alloys, although previous studies have shown inconsistencies. 
Zhao et al. [18] added La into Al-0.5Mg-0.24Si alloy to form 
the LaSi2 phase, which promoted the transformation of the 
Fe-rich phase from β-Al5FeSi to α-Al8Fe2Si, and the appropriate 
La content improved the tensile properties and electrical 
conductivity of the alloy. However, Medvedev et al. [19]

found that the conductivity of aluminum alloy with addition of 
rare earth Ce and La was reduced due to its partial dissolution 
into the Al matrix. Jiang et al. [20] adopted trace La to reduce 
the grain size of Al-Mg-Si alloys and promote the precipitation 
of Mg2Si phases, which improved the tensile strength of the 
alloys from 310 MPa to 361 MPa. Nonetheless, Ding et al. [21] 

reported that the addition of rare earth Y decreased the tensile 
strength of Al-Cu-Mg-Ag alloy. The controversial results 
demonstrate that the effect of rear earth on the microstructure 
and properties of the Al-Mg-Si alloy needs to be further 
studied. 

In this study, the enhancement of both strength and electrical 
conductivity in cast Al-Mg-Si alloy through the addition of 
rare earth La was proposed. The effects of La addition on the 
microstructure, tensile properties, and electrical conductivity 
of the cast Al-Mg-Si alloy were systematically investigated. 
Additionally, the influence mechanisms of La were analyzed 
in detail. This research may serve as a reference for the 
preparation of Al-Mg-Si alloys with excellent mechanical 
properties and electrical conductivity.

2 Experimental procedure
Al-Mg-Si-xLa alloys (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, in wt.%) 
were prepared from pure aluminum (99.9%), pure magnesium 
(99.9%), Al-20Si and Al-20La master alloys, and the specific 
chemical compositions are shown in Table 1. The detailed 
melting process was as follows: Firstly, a certain amount 
of pure aluminum and Al-20Si master alloy were put into a 
graphite crucible and melted in a resistance furnace. When 
they were completely melted at 750 °C, the pure magnesium 
wrapped in aluminum foil and Al-20La master alloy were 
added into the melt by using of a bell jar and stirred for 5 min. 
Then, the refining agent was added and stirred to remove the 
slags and gases, and the melt was holding for 10 min. Finally, 
the melt was cooled down to 720 °C and poured into the 
preheated metal mold to obtain the Al-Mg-Si-xLa alloy ingots. 

Al-Mg-Si-xLa alloy samples for microstructure observation 

were ground, polished, and then etched using a 1% hydrofluoric 
acid solution. The metallographic samples were treated in a 4% 
fluoroborate solution for 90 s to obtain anodic coating, and then 
were observed under polarized light. Microstructure observation 
of the alloys was conducted by using an optical microscope (OM, 
Leica DM ILM) and a scanning electron microscope (SEM, 
FEI Sirion 200). The phase constitution was analyzed using an 
X-ray diffractometer (XRD, X'Pert Pro) with a scanning speed 
of 9°·min-1 and a scanning angle of 10°-90°. The phase in the 
alloys was characterized by a transmission electron microscope 
(TEM, JEM-2100). The tensile properties of the alloys were 
tested on an Instron 569/50 K universal tensile testing machine 
at room temperature, under a loading speed of 1 mm·min-1. The 
geometry and sizes of the tensile test samples are shown in 
Fig. 1. The electrical conductivity of the alloys was measured 
using an RTS-11 metal four-probe tester. The conductivity 
test sample is shown in Fig. 2. The melting behaviors of the 
Al-Mg-Si-xLa alloys under an argon atmosphere were studied 
using differential scanning calorimetry (DSC), employing a 
Netzsch STA 449 F5 model. The samples were heated from 
25 °C to 750 °C with a heating rate of 5 K·min-1.

Table 1: Chemical compositions of Al-Mg-Si-xLa 
alloys (wt.%)

Alloys Mg Si Fe La Al

Al-Mg-Si 0.71 0.66 0.48 0.00 Bal.

Al-Mg-Si-0.1La 0.70 0.67 0.47 0.11 Bal.

Al-Mg-Si-0.2La 0.71 0.67 0.46 0.19 Bal.

Al-Mg-Si-0.3La 0.71 0.67 0.46 0.28 Bal.

Al-Mg-Si-0.4La 0.69 0.67 0.47 0.41 Bal.

Al-Mg-Si-0.5La 0.71 0.67 0.46 0.53 Bal.

Fig. 1: Geometry and sizes of tensile specimen 
(units: mm)

Fig. 2: Geometry and sizes of conductive sample 
(units: mm)
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Fig. 3: OM images of Al-Mg-Si-xLa alloys: (a) Al-Mg-Si; (b) Al-Mg-Si-0.1La; (c) Al-Mg-Si-0.2La; (d) Al-Mg-Si-0.3La; 
(e) Al-Mg-Si-0.4La; (f) Al-Mg-Si-0.5La 

3 Results and discussion
3.1 Microstructure of cast Al-Mg-Si-xLa alloys
Figure 3 presents the OM images of Al-Mg-Si-xLa alloys. The 
corresponding area fraction of the second phase is listed in Table 2.
It can be observed that the Al-Mg-Si alloy contains coarse, dark 
gray phases with irregular needle-like and bone-like shapes 
that continuously distribute along the grain boundaries, though 
the majority exhibit a needle-like morphology, as shown in 
Fig. 3(a). In addition, a few black spherical phases are dispersed 

in the Al matrix. After La is added, the second phases in the 
Al-Mg-Si-xLa alloys are mainly in needle-like shape. Notably, 
when the La content is below 0.2wt.%, the size of these second 
phases is significantly reduced, and their quantity also decreases 
markedly. However, as the content of La continues to rise, the 
amounts of the second phases experience an increase instead. 
Nevertheless, the trend in this regard is not particularly evident. 
Moreover, the number of the black spherical phase continuously 
increases from 0.63% to 1.20%.

(a) (b) (c)

(d) (e) (f)

Table 2: Area fraction of the second phase of Al-Mg-Si-xLa alloys (%)

Second phase Al-Mg-Si Al-Mg-Si-0.1La Al-Mg-Si-0.2La Al-Mg-Si-0.3La Al-Mg-Si-0.4La Al-Mg-Si-0.5La

Needle-like phase 3.11% 2.89% 1.53% 3.29% 2.46% 3.19%

Bone-like phase 1.11% 0.93% 0.21% 1.03% 0.67% 1.02%

Black spherical phase 0.63% 0.66% 1.03% 1.04% 1.07% 1.20%

The polarized light morphologies and the distributions of 
the grain size of Al-Mg-Si-xLa alloys are shown in Fig. 4. 
The calculation results show that the average grain size of the 
Al-Mg-Si-xLa alloys is about 271.9 µm, 201.6 µm, 141.7 µm, 
146.8 µm, 175.5 µm, and 180.1 µm, respectively, as La addition 
amount increases from 0 to 0.5wt.%. It can be seen that the 
grains of the Al-Mg-Si alloy are refined after the addition of La. 
The grain refinement effect of the Al-Mg-Si-0.2La alloy is the 
optimal and the average grain size is reduced by about 47.9% 
compared with that of the Al-Mg-Si alloy. When the La content 
exceeds 0.2wt.%, the average grain size of the alloys gradually 
increases. Furthermore, after adding La, the distribution of the 
grain size is more uniform in the Al-Mg-Si-xLa alloys, as shown 
in Fig. 4(a1)-(f1).

Generally, rare earth La refines α-Al primarily through 
the following mechanisms: (1) promoting the formation of 
nucleation sites; (2) restraining the growth of α-Al; (3) reducing 

the wetting angle θ between the nucleation sites and α-Al [22, 23]. 
Studies indicate that La can form Al11La3 and AlFeLa phases 
in aluminum alloys [24, 25], which facilitates the creation of α-Al 
nucleation sites upon the addition of La.

It is difficult for La atoms to be dissolved in α-Al due to the fact 
that the atomic radius of La is much greater than that of Al and 
the misfit degree of La and Al is about 59at.% [26, 27]. During the 
solidification process, La is ejected from α-Al and then enriched 
in the solidification interface during the growth of α-Al, which can 
restrain the growth of α-Al grains. The growth restriction factor 
(GRF) is used to reflect the effect of La elemental enrichment on 
grain refinement, expressed as follows [28]:

GRF = CLam (k-1) (1)

where CLa is the concentration of La element in the Al-Mg-Si 
alloy, m = -2.034 is the slope of the liquid-phase line of the Al-La
alloy, and k=0.003 is the equilibrium distribution coefficient of 
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Fig. 4: Polarized light morphologies and distributions of the corresponding grain size of Al-Mg-Si-xLa 
alloys: (a, a1) Al-Mg-Si; (b, b1) Al-Mg-Si-0.1La; (c, c1) Al-Mg-Si-0.2La; (d, d1) Al-Mg-Si-0.3La; 

 (e, e1) Al-Mg-Si-0.4La; (f, f1) Al-Mg-Si-0.5La 

La element in the Al-La alloy [23, 29]. The increment 
of GRF is calculated to be approximately 0.20 K 
to 1.01 K by adding 0.1wt.% to 0.5wt.% La. This 
demonstrates that the La addition has little effect 
on restraining the growth of α-Al.

The liquidus temperature of the Al-Mg-Si alloy 
calculated by JMatPro software is 652.0 °C. 
Figure 5 shows the DSC curves of cast Al-Mg-Si
and Al-Mg-Si-0.2La alloys. The nucleation 
undercooling of α-Al nucleus for Al-Mg-Si alloy 
is about 8.3 °C and that of α-Al nucleus for 
Al-Mg-Si-0.2La alloy is about 3.6 °C. Both of 
them are much less than 0.2 Tm (Tm is the liquidus 
temperature, K), indicating that the growth of 

α-Al nucleus is based on heterogeneous nucleation in the solidification [23]. 
According to the theory of heterogeneous nucleation, the wetting angle 
θ plays a crucial role. Research has shown that La can promote grain 
size reduction by decreasing the wetting angle [26]. The wetting angle θ is 
calculated as follows [23]:

(a) (b) (c)

(d) (e) (f)

(a1)

(d1)

(b1)

(e1)

(c1)

(f1)

(2)

where  is the nucleation undercooling (K) of α-Al,  is the 
nucleation temperature (K) of α-Al and  is the liquidus temperature (K)
of the alloys. According to the calculation, the value of wetting angle θ 
for Al-Mg-Si alloy is 13.3° and it decreases to 8.8° for Al-Mg-Si-0.2La 
alloy. Therefore, the addition of La can promote the refinement of grains in 
Al-Mg-Si alloy by decreasing the wetting angle. This is consistent with the 
relevant research results [20].
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Fig. 5: DSC curves of Al-Mg-Si and Al-Mg-Si-0.2La alloys

Fig. 7: SEM microstructures and EDS mappings of 
 Al-Mg-Si-xLa alloys: (a) Al-Mg-Si; (b) Al-Mg-Si-0.1La; 

(c) Al-Mg-Si-0.2La; (d) Al-Mg-Si-0.3La; 
  (e) Al-Mg-Si-0.4La; (f) Al-Mg-Si-0.5La

Fig. 6: XRD patterns of Al-Mg-Si-xLa alloys

(a)

(b)

(c)

(d)

(e)

(f)

3.2 Effect of La on second phase
The XRD patterns of Al-Mg-Si-xLa alloys are shown in Fig. 6.
The analysis results indicate that the cast Al-Mg-Si alloy mainly 
consists of α-Al, Mg2Si, and β-AlFeSi phases. The diffraction 
peaks of the Al11La3 phase appear after the addition of La, 
and their intensity has no evident changes with the increase 
of La content. In addition, compared to the Al-Mg-Si alloy, 
the intensity of diffraction peaks of the Mg2Si phase slightly 
increases after adding La. It suggests that the addition of 
La can promote the formation of the Mg2Si phase, which is 
consistent with the results in Fig. 3, and the same conclusion is 
also found in the Li’s work [30].

The SEM microstructure and EDS mappings of Al-Mg-Si-xLa
alloys are presented in Fig. 7. It can be observed that the 
point-like and needle-like rare earth phases appear in the 
Al-Mg-Si-xLa alloys after adding La. When the La content 
is less than 0.2wt.%, the rare earth phase mainly exists in the 
point-like shape. However, when the La content exceeds 
0.2wt.%, the presence of needle-like rare earth phases increases 
significantly. Moreover, the Mg2Si phase, which is mainly 
distributed at the grain boundaries, also increases significantly in 
the Al-Mg-Si-xLa alloys. However, as the La content exceeds 
0.2wt.%, the number of Mg2Si phase does not continue to 
increase. This observation aligns with relevant literature, 
indicating that trace amounts of La can facilitate the formation 
of Mg2Si particles during solidification [31].

Figure 8 shows the SEM images of Al-Mg-Si alloy and 
Al-Mg-Si-0.3La alloy, and the chemical compositions of the 
corresponding points determined by EDS are listed in Table 3.
In general, most of the Fe-containing phases present in cast 
Al-Mg-Si alloy are β-AlFeSi phase (Al5FeSi) and α-AlFeSi phase 
(Al8Fe2Si). The values of Fe and Si atomic ratio of Al5FeSi phase 
and Al8Fe2Si phase are 1 to 1.3 and 1.5 to 2, respectively [32, 33].
Figures 8(a) and (b) exhibit the bone-like and needle-like AlFeSi 
phases in cast Al-Mg-Si alloy, respectively. The value of the 
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Fig. 8: SEM images of Al-Mg-Si alloy and Al-Mg-Si-0.3La alloy: (a, b) Al-Mg-Si alloy; (c, d) Al-Mg-Si-0.3La alloy 

Fe and Si atomic ratio is about 1.70 for the bone-like phase, 
and about 0.89 for the needle-like phase. Therefore, combined 
with XRD pattern in Fig. 6 and Table 3, it can be determined 
that the bone-like AlFeSi phase is Al8Fe2Si and the needle-like
AlFeSi phase is Al5FeSi. Figures 8(c) and (d) show the bone-like
and needle-like phases of cast Al-Mg-Si-0.3La alloy, 
respectively. After adding La, the value of the Fe and Si atomic 
ratio of the bone-like Al8Fe2Si phase is about 1.67, and that of 

the needle-like Al5FeSi phase is about 0.95. 
Additionally, it is observed in Fig. 8 that the morphology 

of the AlFeSi phase transitions from a continuous state to a 
discontinuous state following the addition of La. It has been 
suggested that rare earth La promotes the transformation of 
the β-AlFeSi phase to the α-AlFeSi phase [34], but no such 
transformation is found in this study.

(a)

(c)

(b)

(d)

Table 3: EDS results of the corresponding points in Fig. 8

Point No.
Atomic fraction (%)

Al Mg Si Fe Fe/Si

1 89.48 0.50 3.71 6.31 1.70

2 85.10 0.73 7.51 6.66 0.89

3 84.61 2.17 4.92 8.30 1.67

4 84.51 4.17 5.82 5.50 0.95

The SEM and the corresponding EDS images of the rare earth
phase in Al-Mg-Si-0.4La alloy are shown in Fig. 9. It is observed 
that a portion of the La-rich phase exhibits a needle-like
morphology, while another portion presents a point-like 
appearance. Both morphologies are distributed along the grain 
boundaries of the Al-Mg-Si alloys. The results of EDS reveal 
that both of the point-like phase and needle-like phase mainly 
consist of Al, Mg, Si, and La elements, and they are free of Fe 

elements. It is noteworthy that the Mg2Si phases are mainly 
distributed around the La-rich rare earth phase according to 
the distribution of the elements shown in Fig. 9. La readily 
combines with Al to form new phases in the Al-Mg-Si-xLa 
alloys [35, 36]. Additionally, the rare earth phase can nucleate 
and grow on the surface of the Mg2Si phase [23]. Therefore, it is 
speculated that the La-rich phase in the Al-Mg-Si-xLa alloys is 
an Al-La binary phase.

Furthermore, the TEM analysis was used to verify the 
above speculation. Figure 10 shows the TEM images of the 
needle-like rare earth phase. The rare earth phase exhibits a 
face-centered cubic structure by calibrating the diffraction 
spots, as shown in Fig. 10(c). Through the inverse fast 
Fourier transformation (IFFT), the interplanar spacing of the 
(002) crystalline plane is obtained to be 0.6449 nm in the 
high-resolution image [Fig. 10(d)], which is close to that of 
Al11La3 phase [37]. Therefore, it is determined that the needle-like
rare earth phase is the Al11La3 phase. This is consistent with the 
results of XRD.
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Fig. 9: SEM and the corresponding EDS images of rare earth phases in Al-Mg-Si-0.4La alloy 

Fig. 10: TEM images of rare earth phase: (a) bright field image of rare earth phase; (b) the corresponding 
HRTEM image; (c) the corresponding FFT pattern; (d) the corresponding IFFT pattern 

3.3 Tensile properties
Figure 11 shows the engineering stress-strain curves and the 
tensile properties of the cast Al-Mg-Si-xLa alloys. The ultimate 
tensile strength (UTS), yield strength (YS), and elongation (EL) 
of Al-Mg-Si-xLa alloys present a tendency of initially increase 
and subsequently decrease with an increase in La content. 
Compared with the Al-Mg-Si alloy (UTS: 156 MPa, YS: 76 MPa, 
and EL: 11.1%), the Al-Mg-Si-0.2La alloy exhibits the optimal 
tensile properties with UTS of 170 MPa, YS of 88 MPa, and 
EL of 18.9%, which are improved by 9.0%, 15.8%, and 70.3%, 

respectively. However, the tensile properties of the Al-Mg-Si-xLa
alloys gradually decrease when the content of La exceeds 
0.2wt.%.

The tensile fracture morphologies of the Al-Mg-Si-xLa 
alloys are shown in Fig. 12. On the whole, the fracture surfaces 
of Al-Mg-Si-xLa alloys are mainly composed of dimples 
and small cleavage planes, which is clearly characterized by 
ductile fracture. There are many large dimples, a few cleavage 
planes, and a small number of microcracks at the fracture 
surface of Al-Mg-Si alloy, as shown in Fig. 12(a). After adding 

(a)

(c)

(b)

(d)

nm
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Fig. 11: Tensile properties of Al-Mg-Si-xLa alloys: (a) engineering stress-strain curves; (b) tensile strength 
and elongation

Fig. 12: Fracture surface morphologies of Al-Mg-Si-xLa alloys: (a) Al-Mg-Si; (b) Al-Mg-Si-0.1La; (c) Al-Mg-Si-0.2La; 
(d) Al-Mg-Si-0.3La; (e) Al-Mg-Si-0.4La; (f) Al-Mg-Si-0.5La

(a) (b)

(a) (b) (c)

(d) (e) (f)

La, the microcracks basically disappear, and the dimples firstly 
increase and then decrease while the cleavage planes show 
the opposite trend with the increase of La content, as shown 
in Figs. 12(b)-(f). Moreover, when La content is 0.2wt.%, 
the dimples of consistent size are uniformly distributed at the 
fracture surface of Al-Mg-Si-0.2La alloy, accompanied by a 
scarcity of cleavage planes. However, when the La content 
exceeds 0.2wt.%, the number of dimples reduces gradually, 
but the cleavage planes are more obvious.

Combined with the microstructure analysis, the strengthening 
effect of La in the Al-Mg-Si-xLa alloys is mainly attributed to 
fine grain strengthening and second phase strengthening. When 
the addition content of La is 0.2wt.%, the average grain size 
is the smallest, which enhances the tensile properties of the 
Al-Mg-Si-0.2La alloy. The increase of the Mg2Si phase and 
a small amount of the point-like Al11La3 phases are also 
beneficial for the tensile properties of the Al-Mg-Si-0.2La alloy. 
Furthermore, the change of the AlFeSi phase morphology from 
continuous state to discontinuous state has a positive effect on 
the tensile properties of the Al-Mg-Si-0.2La alloy. When the 
addition content of La is more than 0.2wt.%, the increase of 
Mg2Si phase is not obvious. However, the average grain size of 

the Al-Mg-Si-xLa alloys gradually increases. Furthermore, many 
needle-like Al11La3 phases are formed in the Al-Mg-Si-xLa
alloys, which is detrimental to the tensile properties of the 
Al-Mg-Si-xLa alloys. As a result, the tensile properties of the 
Al-Mg-Si-xLa alloys gradually decrease when the La content 
exceeds 0.2wt.%.

3.4 Electrical conductivity
Figure 13 presents the variation curves of electrical conductivity 
of the cast Al-Mg-Si-xLa alloys. The electrical conductivities of 
the cast Al-Mg-Si-xLa alloys are 37.5%, 43.4%, 44.0%, 42.8%, 
42.5%, and 41.6% IACS, respectively, which also increase at 
first and then decrease with an increase in La content from 0 to 
0.5wt.%. It is observed that La can significantly improve the 
electrical conductivity of the cast Al-Mg-Si-xLa alloys. When 
the La addition is 0.2wt.%, the electrical conductivity of the 
Al-Mg-Si-0.2La alloy achieves the maximum value, which is 
about 17.3% higher than that of the Al-Mg-Si alloy. When the 
La content exceeds 0.2wt.%, the electrical conductivity declines 
gradually, and it decreases to 41.6% IACS of Al-Mg-Si-0.5La
alloy, which is still 10.9% higher than that of the Al-Mg-Si 
alloy.
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Fig. 13: Variation curve of electrical conductivity of 
Al-Mg-Si-xLa alloys

According to the Matthiessen’s rule, the total resistivity of 
the alloy could be expressed as follows [38]:

where ρd is the resistance caused by crystal defects of the 
alloy, ρss, ρp, ρdis, and ρgb are the resistance caused by solid 
solution atoms, phases, dislocations, and grain boundaries, 
respectively. The dislocation of cast Al-Mg-Si-xLa alloys can 
be neglected in this study. Based on the above analysis of the 
microstructure, the effect of La on the electrical conductivity 
of the Al-Mg-Si-xLa alloys is mainly due to the decrease of 
solute atoms, the increase of grain boundaries, and the change 
of second phase morphology.

According to the theory of electrical conductivity of metals, 
the solid solution atom is the most influential factor on the 
electrical conductivity of the metal, followed by defects, the 
grain boundaries, and the second phases [39]. Firstly, the Mg2Si 
phase significantly increase in the Al-Mg-Si-xLa alloys as the 
La content increases from 0 to 0.2wt.%. This indicates that Mg 
and Si solute atoms in the Al matrix are obviously reduced by 
the formation of Mg2Si phase, which will remarkably increase 
the electron transport efficiency of the alloy. Then, the number 
of grain boundaries increases due to the grain refinement of 
cast Al-Mg-Si-xLa alloys, and the homogeneity of Al matrix 
is improved, resulting in the reduction of scattering ability of 
structural stress on electrons. At last, the transformation of the 
AlFeSi phase morphology from a continuous to a discontinuous 
state, along with the presence of point-like Al11La3 particles, 
exerts a beneficial influence on the electrical conductivity of the 
alloys. Therefore, the Al-Mg-Si-0.2La alloy exhibits the optimal 
electrical conductivity. 

However, when the La content exceeds 0.2wt.%, the 
precipitation of Mg and Si solute atoms from the Al matrix 
is obviously weakened, and many needle-like Al11La3 phases 
form due to the segregation of excessive La, enhancing the 
scattering of electrons. Thus, the electrical conductivity of 
the Al-Mg-Si-xLa alloys gradually degrades. In addition, La 
also can remove the gas (H2) and the slag (Al2O3) during the 
melting process, which may be one of the reasons why the 
electrical conductivity of the Al-Mg-Si-xLa alloys is still better 
than that of the Al-Mg-Si alloy. 

(3)ρd = ρss + ρp + ρdis + ρgb

4 Conclusions
The effects of La content on the microstructure evolution, 
tensile properties, and electrical conductivity of cast 
Al-Mg-Si-xLa alloys were studied in detail. The main conclusions 
are drawn as follows: 

(1) La can refine the grains of the cast Al-Mg-Si-xLa alloys 
by reducing the wetting angle. At the optimal La content of 
0.2wt.%, the average grain size of the Al-Mg-Si-0.2La alloy is 
reduced by 47.9% compared with that of the Al-Mg-Si alloy.

(2) La promotes the formation of the Mg2Si phase and 
induces a morphological transformation in the AlFeSi phase, 
transitioning it from a continuous to a discontinuous state. 
However, excessive La will form many needle-like Al11La3 
phases. 

(3) The Al-Mg-Si-0.2La alloy exhibits the optimal tensile 
properties and electrical conductivity with an ultimate tensile 
strength of 170 MPa, a yield strength of 88 MPa, an elongation 
of 18.9%, and an electrical conductivity of 44.0% IACS, 
which are 9.0%, 15.8%, 70.3%, and 17.3% higher than that of 
the Al-Mg-Si alloy, respectively. 

(4) The enhancement of tensile properties of Al-Mg-Si-0.2La 
alloy is mainly attributed to the fine grain strengthening and 
the second phase strengthening. Furthermore, the improvement 
of electrical conductivity is mainly ascribed to the lower Mg 
and Si solute atoms in the Al-Mg-Si-0.2La alloy.
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