
 439

CHINA  FOUNDRYVol. 22 No. 4 July 2025
Research & Development

Li-yi Jiang1, 2, Chao-yi Shen1, Ting-ting Liu2, Chang-dong Zhang2, Xiang Su3, 4, Wei-wei Xu1, Bo-xiang Wang1, 
*Zhi-xiang Qi3, and Wen-he Liao2 
1. School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2. National Joint Engineering Research Center of NC forming technology and equipment, School of Mechanical Engineering, Nanjing 
   University of Science and Technology, Nanjing 210094, China
3. Jiangsu Belight Laboratory, State Key Laboratory of Advanced Casting Technologies, Nanjing University of Science and Technology, 
    Nanjing 210094, China
4. School of Aviation and Mechanical Engineering, Changzhou Institute of Technology, Changzhou 213032, Jiangsu, China

1 Introduction
Aluminum alloys are widely favored for aerospace 
and automotive applications due to their high specific 
strength. Among the various types of aluminum 
alloys, cast aluminum alloys are commonly used in 
engine components, where tribological performance is 
critical. However, cast aluminum alloys with limited 
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wear resistance may not withstand the loads required 
for more demanding application environments [1, 2]. 
Incorporating high-performance particles or fibers 
to aluminum alloys can significantly enhance the 
wear resistance of the matrix. Research indicates that 
uniformly dispersed reinforcements within the aluminum 
matrix can effectively reduce wear loss [3, 4]. Numerous 
efforts, often involving complex processes, have 
been made to achieve an optimal distribution of these 
reinforcements [5-7].

Laser powder bed fusion (LPBF) is one of the most 
prominent additive manufacturing (AM) technologies, 
utilizing a laser to selectively melt spread powder to 
fabricate complex structures based on computer-aided 
design (CAD) data files [8]. Due to its advantageous 
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Fig. 1: Raw CNTs powder (a) and raw AlSi10Mg powder (b) 

solidification process, reinforcement can be controlled by 
melt pool convection at the microscale to achieve significant 
strengthening, showing great potential in the preparation 
of metal matrix composites. Yu et al. [9] reviewed the LPBF 
processing of particle-reinforced metal matrix nanocomposites 
and highlighted that AlSi10Mg alloys are more suitable as 
the composite matrix in the LPBF process compared to other 
aluminum alloys, due to their narrow solidification range. Jue 
and Gu [10] found that a smaller grain size of cellular dendritic 
Al matrix could be achieved in LPBF-fabricated aluminum 
oxide reinforced AlSi10Mg composites, leading to impressive 
improvements in hardness and tribological properties. When 
micro aluminum oxide with a content of 2.0wt.% was added, 
the lowest CoF of 0.3 was achieved under optimal LPBF 
parameters. Gao et al. [11] utilized nano-TiN to reinforce 
AlSi10Mg at a content of 2.0wt.%, increasing the microhardness 
of the composite to 145±4.9 HV. Furthermore, the CoF and 
wear rate were reduced to 0.43 and (1.4±0.23)×10-3 mm3·Nm-1, 
respectively. These studies indicate that the tribological 
properties of aluminum matrix composites fabricated by 
LPBF can be effectively improved with the addition of 
reinforcements. However, current research primarily focuses on 
zero-dimensional particle reinforcements, with relatively fewer 
studies exploring higher-dimensional reinforcements.

Carbon nanotubes, as a novel one-dimensional reinforcement, 
have demonstrated significant potential in enhancing and 
expanding the mechanical, physical, and tribological properties 
of metal matrix through conventional processes [12]. Recently, 
LPBF, as a prominent manufacturing process, has garnered 
significant attention from researchers for the investigation of 
CNT-reinforced aluminum composites. Among these studies, 
CNTs have also shown promising results in improving the 
mechanical properties of Al matrix composites. Zhao et al. [13]

investigated the microstructure and properties of 1.0wt.% 
CNTs/AlSi10Mg composites fabricated by LPBF. They 
discovered that the introduction of CNTs improved hardness 
and electrical conductivity, although it increased porosity 
and resulted in a microstructure similar to that of LPBFed 
AlSi10Mg. Du et al. [14] compared 0.5wt.% CNTs/AlSi10Mg 
composites prepared by LPBF and friction stir processing, 
respectively. Their findings indicated that both techniques 
were capable of fabricating components with very fine 
grains, whereas samples fabricated by LPBF exhibited better 
mechanical properties. In a study by Wang et al. [15] focusing on 

1.0wt.% CNTs/AlSi10Mg fabricated by LPBF, a better hardness 
and tensile strength than AlSi10Mg fabricated by LPBF 
were observed, reaching up to 143.7 HV and 412±35 MPa,
respectively. The enhancements were attributed to grain 
refinement and dislocation pinning as the strengthening 
mechanisms. Gu et al. [16] optimized the LPBF processing 
parameters of laser power of 350 W and scan speed of 2.0 m·s-1 
on 0.5wt.% CNTs/AlSi10Mg nanocomposites. The fully dense 
sample was achieved which exhibited high microhardness of 
154.12 HV and tensile strength of 420.8 MPa. Jiang et al. [17]

investigated the LPBF process for fabricating 1.0wt.% 
CNTs/AlSi10Mg composites. A significant improvement 
in hardness and tensile strength was achieved. It was 
approximately 10% and 20%, respectively, compared to 
AlSi10Mg. The findings suggest that CNTs could notable 
enhance mechanical properties of the composites fabricated by 
LPBF. However, the tribological properties of CNTs/AlSi10Mg 
composites prepared by LPBF have yet to be reported.

In this study, the tribological properties of CNT-reinforced 
AlSi10Mg nanocomposites with varying CNT contents 
fabricated via LPBF were investigated. A colloidal mixing 
method was employed to achieve uniform distribution of CNTs 
in the composite powders. The microstructure, mechanical, and 
friction properties of the LPBF samples were characterized. 
Additionally, the relationship among these results were 
discussed. 

2 Experiment
2.1 Materials
The CNTs [Fig. 1(a)], with an outer diameter of 20-30 nm, a 
length of 10-30 μm, and a purity exceeding 98%, were provided 
by Chengdu Organic Chemistry Co., Ltd. The AlSi10Mg 
powder [Fig. 1(b)] was supplied by Concept Laser GmbH 
Co., Ltd. According to the work of Azar and Pourfath [18], N-methyl 
pyrrolidone (NMP) demonstrated excellent performance in 
dispersing nanocarbons. To ensure the preservation of sphericity 
and size distribution of the composite powders, as well as the 
structural integrity of the CNTs, a colloidal mixing method 
utilizing NMP was employed to disperse the CNTs into the 
AlSi10Mg powder. The dispersion process was detailed in 
our previous study [19]. Consequently, composite powders with 
uniformly dispersed CNTs were successfully obtained with a 
content no more than 2.0wt.%.
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2.2 LPBF process
The Concept Laser M2 Cusing system (400 W, 
single laser) from Concept Laser GmbH Co., 
Ltd. was employed for the LPBF process of 
composite powders containing CNT fractions 
ranging from 0.0 to 2.0wt.% (0.0, 0.5, 1.0, 1.5, 
and 2.0, wt.%). Argon gas with a purity of 
99.999% was used as the protective atmosphere. 
The LPBF parameters were set as follows: a laser 
power of 370 W, a scan spacing of 105 μm, a 
powder layer thickness of 30 μm, and scan speeds 
ranging from 900 to 1,900 mm·s-1 in intervals of 
200 mm·s-1. The default zigzag scan strategy was 
utilized during intra-layer scanning, with a 90° 
rotation implemented between adjacent layers. 
The fabricated samples for testing measured 
10 mm×10 mm×10 mm.

2.3 Characterization
An Aramis Raman spectrometer (HORIBA 
Scientific Co., Ltd., France) was employed 
to evaluate the structural changes of CNTs in 
composite powders at a wavelength of 532 nm. 
The hardness of the samples, mechanically 
ground and polished in standard routines, 
was measured using a TMHV-50MD HV-50 
micro-Vickers hardness tester (Shanghai Tu 
Ming Optical Instrument Co., Ltd., China). 
Microstructural analysis of the etched samples 
was conducted using an FEI Quanta 250F 
scanning electron microscope (SEM) with an 
Oxford energy dispersive spectrometer (EDS) at 
30 kV and a Zeiss Auriga SEM equipped with an 
electron backscattered diffraction detector (EBSD) 
at 20 kV. Keller reagent (HF: HCl: HNO3: H2O = 
1: 1.5: 2.5: 95) was used for etching the polished 
SEM samples. For EBSD analysis, samples 
were firstly mechanically polished, followed 
by electrochemical polishing in a solution of 
perchloric acid and ethanol (1: 9), applying a 
voltage of 20 V for 15 s at -20 °C. To analyze the 
morphology of CNTs in ion-milled samples, an 
FEI Tecnai G2 transmission electron microscope 
was utilized at 200 kV. A UMT-2EC friction and 
wear tester (Bruker Co., Ltd., Germany) was 
utilized to determine tribological properties of the 
samples at a scan speed of 1,300 mm·s-1. A GCr15 
bearing steel ball (63 HRC) with a diameter of 
4 mm was used as the friction material. During 
dry friction testing, the relative sliding speed 
was set to 20 mm·s-1, the normal load to 9 N, and 
the test duration to 30 min. The worn surfaces 
were examined using both a scanning electron 
microscope (SEM) and a laser scanning confocal 
microscope (LSCM) (Keyence VK-X150K, Japan).

3 Results
3.1 Morphology of mixed powders
The morphologies of the mixed powders with various CNT contents are 
shown in Fig. 2. The sphericity and size of the mixed powders [Figs. 2(a), 
(c), (e), (g), and (i)] are nearly consistent with those of the raw AlSi10Mg 
powder [Fig. 1(b)], which can be attributed to the effectiveness of the 
colloidal mixing process. It ensures acceptable powder bed behavior for 
LPBF [20]. At higher magnifications [Figs. 2(b), (d), (f), (h), and (j)], CNTs 
are found to be uniformly distributed on the powder surface until their 
content exceeds 2.0wt.%. As the CNT content increases, the density of CNT 
distribution on the powder surface also increases, with small agglomerations 
(submicron scale) appearing when the CNT content reached 1.5wt.% and 
2.0wt.%, as indicated by the orange arrows in Figs. 2(f) and (h). When the 

Fig. 2: Mixed powder with different CNT contents: (a) and (b) 0.5wt.%; 
(c) and (d) 1.0wt.%; (e) and (f) 1.5wt.%; (g) and (h) 2.0wt.%; 

            (i) and (j) 3.0wt.%
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Fig. 3: Raman shift of raw CNTs and mixed powders

Fig. 4: Microstructures of the test samples with varying CNT contents at a scan speed of 1,300 mm·s-1, observed 
at different magnifications: (a) 0.0wt.%; (b) 0.5wt.%; (c) 1.0wt.%; (d) 1.5wt.%; (e) 2.0wt.%

CNT content reaches 3.0wt.%, the clusters in the powder 
surface become larger, with diameters of around 5 μm [Fig. 2(j)]. 
The primary reason is the limited surface area of the 
matrix powder, which results in agglomerations at higher 
CNT contents. Figure 2 shows that the maximum carbon 
nanotube content is 2.0wt.% to get homogeneous dispersion. 
Consequently, the discussion in this study primarily focused 
on the samples with a CNT content no more than 2.0wt.%.

Raman spectroscopy was commonly employed to investigate 
the structure and defects of carbon materials. According to the 
Raman shift of the mixed powders (Fig. 3), the ratio of the 
damage band (D-band) of CNTs at approximately 1,340 cm-1 
to the graphite band (G-band) at around 1,570 cm-1 (ID/IG ratio) 
changes from 0.899 (raw CNTs) to 0.975 (mixed powder with 
1.0wt.% CNTs) and 1.020 (mixed powder with 2.0wt.% CNTs) 
after colloidal mixing. This indicates that the structure of CNTs 
is well-preserved in the composite powders. In general, the 
colloidal mixing method demonstrates excellent dispersion 
performance for CNTs composite powders.

3.2 Microstructure of LPBF samples
According to the density and hardness results of all test samples 
(Fig. 7), the samples processed at a consistent scan speed of 
1,300 mm·s-1 exhibits a balanced performance in terms of both 
density and hardness. The microstructures of these samples 
in the horizontal direction are displayed in Fig. 4 for later 
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Fig. 5: EBSD results of the test samples with varying CNT contents at a scan speed of 1,300 mm·s-1: 
(a) 0.0wt.%; (b) 1.0wt.%; (c) 2.0wt.%

Fig. 6: TEM micrographs of the test samples with varying CNT fractions at a scan speed of 1,300 mm·s-1: 
(a) and (c) 1.0wt.%; (b) and (d) 2.0wt.%

discussion. At a low magnification (left column of Fig. 4), an 
increase in porosity is observed with higher CNT contents. At 
a high magnification of the fine zone (right column of Fig. 4),
the network structure of the CNTs/AlSi10Mg composite 
resembles that of LPBFed AlSi10Mg. Furthermore, the 
microstructure exhibits a refining trend as CNT content 
increases, with the network size decreasing from approximately 
500 nm to 200 nm.

A hierarchical microstructure consisting of coarse grains and 
ultrafine grains is shown in Fig. 5. Further EBSD statistical 
studies were conducted on the ultrafine grain regions for 

samples containing CNTs. As the CNT content increases, the 
size ratio of the ultrafine grain regions also increases. The 
EBSD results of the ultrafine grains regions [Figs. 5(b) and (c)]
indicates that the grain size exhibits a refining trend with 
increasing CNT content. Furthermore, the grain size in the 
coarse regions also decreases significantly.

The morphologies of CNTs in the CNTs/AlSi10Mg samples 
with 1.0wt.% and 2.0wt.% CNTs are displayed in Fig. 6. As 
observed, the CNTs in both samples are uniformly distributed 
within the matrix, exhibiting random orientation at the cellular 
matrix. However, the length of the CNTs in the test samples 
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However, the CoF of the sample with 1.5wt.% CNTs shows a 
slight increase compared to the sample with 1.0wt.% CNTs.

Wear rate is another key factor to evaluate the tribological 
properties of the test samples. Therefore, to further investigate 
the tribological properties of CNTs/AlSi10Mg, the wear rates 
[Fig. 8(b)] of the composites were additionally calculated 
using Eq. (1), as described in the work of Huang et al. [21]:

Fig. 8: Friction test results: (a) CoF curves of test parts vs. friction time; (b) mean CoF and wear rate vs. CNT content

Fig. 7: Relative density (a) and hardness (b) of test samples with varying CNT fractions at different scan speeds

(1)

is shorter than that of the original CNTs [Fig. 1(a)]. The 
significant difference between the two samples lies in the 
morphology of the CNTs. In the samples with 1.0wt.% CNTs, 
the CNTs exhibit lengths of 200-300 nm [Fig. 6(c)], whereas 
in the samples with 2.0wt.% CNTs, the CNTs have lengths of 
500-1,000 nm [Fig. 6(d)].

3.3 Relative density and hardness
As the scan speed increases from 900 to 1,900 mm·s-1, the 
relative density of the LPBF samples with CNT contents 
ranging from 0.0wt.% to 1.5wt.% firstly increases and then 
decreases, while the relative density of the LPBF samples 
with 2.0wt.% CNT content continuously decreases [Fig. 7(a)]. 
When the CNT content reaches 2.0wt.%, the density of the 
LPBF samples drops significantly. The hardness of the LPBF 
samples reaches a maximum value of 143.3 HV when the CNT 
content is 1.0wt.% and the laser scan speed is 1,300 mm·s-1. 
Correspondingly, test deviations increase with CNT content, as 
indicated by the error bars, due to the inconsistency of density 
and reinforcement. Increasing the density of the samples may 
further improve their mechanical performance.

3.4 Tribological properties
The CoF is a key factor of tribological property which 
indicates the amount of friction existing between two surfaces. 
The CoF curves [Fig. 8(a)] during the friction test exhibit 
substantial fluctuations in the first 600 s, indicating a running-in 
process between the composites and the friction material. After 
600 s, the curves stabilize, entering a steady friction stage. The 
mean CoF [Fig. 8(b)] during this stable friction stage shows a 
decreasing trend with increasing CNT content. At a CNT content 
of 2.0wt.%, the composite achieves the lowest CoF of 0.37. 

where K is the wear rate, ΔV is the volume loss during the 
friction test directly measured by LSCM [Fig. 9(f)], F is the 
load force, f is the frequency, A is the amplitude, T is the 
sliding time, and vf is the sliding speed. Figure 8(b) shows that 
the wear rate reaches the lowest value of 0.82×10-3 mm3·Nm-1 
at a CNT content of 2.0wt.%. Combining the experimental 
CoF results, the increased CNTs fraction effectively enhances 
the tribological properties of the composites, resulting in 
approximately 14% and 30% improvements in CoF and wear 
rate, respectively.

4 Discussion
4.1 Microstructure formation mechanism of  

CNTs/AlSi10Mg composites by LPBF
The Al-C reaction occurs readily when the temperature exceeds 
500 °C. Given that the laser scanning track by track induces 
heating and cooling cycles, the Al-C reaction is facilitated 
during the LPBF process. Consequently, Al-C is detected in 
samples with varying CNT contents. Zhou et al. [22] investigated 
the interface and interfacial reactions between CNTs and Al, 
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discovering that Al-C preferentially forms at the active prism 
plane edges located at the open ends of the CNTs. Further 
research by Zhou et al. [23] indicated that the C atoms at the ends 
of CNTs exhibit higher activity due to the presence of more 
edges, vacancies, and dangling bonds. These C atoms more 
readily diffuse for a C+Al→Al4C3 reaction within the high-
temperature molten pool during LPBF. This reaction likely 
results in shorter CNTs lengths in the LPBF samples compared 
to the original materials. Moreover, it is assumed that the 
amount of CNTs consumed by the reaction remains constant 
under the same laser input energy density. Therefore, as the 
initial CNT content in the powders increases, a larger number 
of CNTs survive in the specimens. Samples with 2.0wt.% 
CNTs exhibit relatively more intact structures and denser 
distributions [Fig. 6(b)]. Additionally, Yuan and Chen [24] noted 
that direct laser irradiation can also shorten the size of CNTs. 
However, a significant portion of the powder surface is not 
directly exposed to the laser beam during the LPBF process. 
Direct laser irradiation leads to variations in CNTs lengths 
(Fig. 6) not only among samples with different CNT contents 
but also within the same sample. Consequently, the primary 
mechanism leading to the reduction in CNTs length is the 
reaction between Al and CNTs.

Kou [25] found that the morphology and size of solidification 
structures are related to the temperature gradient G and the 
growth rate R. The ratio G/R determines the morphology of 
the solidification structure, while the product G·R determines 
the size of the solidification structure. In AlSi10Mg, cellular 
dendrites are the primary solidification structures. Takata et al. [26]

discovered that supersaturated Si was contained in α-Al in 
as-built AlSi10Mg. During the solidification process, the Si 
remaining in the molten pool precipitates around the growing 
cellular Al dendrites. Due to poor wettability between CNTs 
and molten Al, the CNTs are excluded from the grains and 
solidify within the liquid film between the cellular dendrites. 
As a result, the CNTs end up co-located with Si. Surappa [27] 

indicated that the presence of reinforcement affects the grain 
size of the matrix by restricting grain growth. The uniformly 
distributed CNTs at the cellular matrix provide resistance to the 
growth of cellular dendrites in molten pool. Therefore, CNTs 
surrounding the cellular dendrites effectively restrain grain 
growth and contribute to the formation of a more complete Si 
network.

Although the addition of CNTs reduces the size of cellular 
dendrites and completes the network structure, it unfortunately 
increases porosity. The large surface area of CNTs makes the 
material highly absorptive of H2O and gas. Consequently, 
as more CNTs are added, more gas is incorporated into the 
composite powders, leading to more evaporation pores in 
the LPBF samples. Additionally, a previous study found that 
good metallurgical bonding between adjacent scan lines and 
reduced internal porosity could be achieved at a scan speed of 
1,300 mm·s-1 with 1.0wt.% CNTs during the LPBF process [17]. 
Gu et al. [28] discovered that the viscosity of the molten pool 
increases with a higher reinforcement content, which reduces 
the flowability of the melt. Therefore, more energy is required 

to spread the molten pool as the CNT content increases. 
Consequently, higher porosity is observed in composites with 
increased CNT content [Figs. 4(d) and (e), and Fig. 7(a)] when 
using the same laser parameters.

4.2 Strengthen mechanism of CNTs
Huang et al. [29] discovered that a net-like microstructure, 
where a hard phase encapsulated a soft phase to form an 
inhomogeneous architecture, aligns with the upper bound of 
the Hashin-Shtrikman theory. In the research of Li et al. [30],
higher mechanical properties compared to cast and aged 
AlSi10Mg samples are attributed to a nearly continuous 
reticulated silicon structure in the microstructure of LPBF 
AlSi10Mg samples. The enhanced completeness and continuity 
of the microstructure due to CNTs contributed to improved 
composite hardness. Additionally, the Hall-Petch effect, 
resulting from grain size refinement induced by CNTs, also 
contribute to the improvement of composite’s performance. 
Chen et al. [31] found that dislocations could be impeded due to 
Orowan strengthening induced by CNTs with an aspect ratio of 
approximately 10. Overall, the hardness of the LPBF samples 
is enhanced by these three mechanisms with the addition 
of CNTs. However, when CNT content exceeds 1.0wt.%, 
increased porosity [Fig. 7(a)] begins to diminish these 
strengthening effects. Consequently, the maximum hardness of 
composites with 1.5wt.% and 2.0wt.% CNTs is lower than that 
of the composite with 1.0wt.% CNTs. 

Moreover, the test results [Fig. 7(b)] indicate that the scan 
speed corresponding to peak relative density decreases as the 
CNT content increases. Hence, the peak hardness of the test 
samples decreases. According to the equation of laser energy 
density [32, 33] in Eq. (2), the input energy density increases as 
the scan speed decreases.

(2)
where η represents the laser energy density, P denotes the laser 
power, and v is the scan speed. Increasing the input energy by 
reducing the scan speed aids in the spreading of the molten 
pool and enhances bonding between scan tracks. Consequently, 
the optimal scan speed for CNTs/AlSi10Mg composites 
decreases as the CNT content increases.

4.3 Fiction behavior and wear mechanism
Grooves are observed on the worn surfaces of all samples
(Fig. 9). The primary difference among the worn surfaces is the 
depth of these grooves. Generally, the groove depth decreases 
with increasing CNT content, except for the sample shown in 
Fig. 9(b). This observation aligns with the wear rate results.

The SEM images of the worn surfaces (Fig. 10) reveal the 
presence of grooves and an adhesive tribolayer. Consequently, 
the primary wear mechanisms during the friction test are 
identified as abrasive wear and adhesive wear.

In samples with a higher CNT content, the adhesive 
tribolayer area is reduced and the grooves are less pronounced. 
According to Archard’s theory [34], shearing of junctions under 
applied force leads to deformation in the subsurface region of 
a softer material, resulting in the formation of microcracks. 
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Consequently, wear debris and the adhesive tribolayer form 
as the deformed material detaches from the softer specimen’s 
surface. Additionally, the EDS analysis of the vertical-cross 
section of worn sample with 2.0wt.% CNTs reveals that Al, 
C, and Si are the predominant elements present on the worn 
surface (Fig. 11). During the friction test, these elements 
on the worn sufarce are generally accompanied by relative 
oxides. Unfortunately, the oxides act as third-body abrasives, 
exacerbating surface wear. This phenomenon aligns with the 
investigation of Kang et al. [35], who found that silicon oxides 
and aluminum oxides were primarily caused by oxidation 
reactions. However, the chemical reaction leading to these 
oxides could not be mitigated by the addition of CNTs.

With the addition of CNTs, the network microstructure 
becomes more stable due to the hybrid strengthening effect of 
CNTs and Si. As a result, adhesive wear is reduced on the worn 
surfaces. Additionally, Zhai et al. [36] discovered that CNTs can 
form a self-lubricating film, preventing direct contact between 
sliding surfaces. This can be found in Fig. 11(c) in this study. 

These self-lubricating films minimize the ploughing effect of 
hard asperities, as the carbon film reacts with oxygen more 
readily than Al and Si during friction.

Overall, the wear resistance is enhanced through two primary 
mechanisms: reduced adhesive wear area and shallower 
grooves. Higher CNT contents contribute to a lower CoF and 
wear rate in the composites. However, based on the analysis 
of CNT morphology in LPBF samples, if the amount of 
CNTs is insufficient, they are almost entirely reacted, which 
can diminish the composite’s wear resistance, as observed 
in samples with 0.5wt.% CNTs [Fig. 9(b)]. Additionally, 
Baradeswaran and Perumal [37] found that pores in the samples 
increase the CoF and wear rate of the composites due to the 
large bearing area and stress concentration around the pores. 
Consequently, the presence of pores in the LPBF samples, 
such as observed in the worn surface of the sample with 1.5wt.% 
CNTs [indicated by the blue circle in Fig. 10(d)], is believed to 
have resulted in relatively lower tribological performance for 
these samples with CNT content exceeding 1.0wt.%.

Fig. 9: Complete morphology of worn surfaces at varying CNT contents as observed through LSCM: 
(a) 0.0wt.%; (b) 0.5wt.%; (c) 1.0wt.%; (d) 1.5wt.%; (e) 2.0wt.%; (f) volume measure process

Fig. 10: Morphology of worn surfaces of CNTs/AlSi10Mg composite samples with varying CNT contents observed 
via SEM: (a) 0.0wt.%; (b) 0.5wt.%; (c) 1.0wt.%; (d) 1.5wt.%; (e) 2.0wt.%. The area of adhesive tribolayer 
is marked in green arrows and the area of grooves is marked  in orange arrows
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Fig. 11: Element distribution in the vertical cross-section of worn sample with 2.0wt.% CNTs: 
(a) SEM; (b) Al; (c) C; and (d) Si

In summary, the addition of CNTs improves the tribological 
properties of the matrix. However, this enhancement is not 
significant when the CNT content is insufficient, as some CNTs 
are consumed by the reactions. Furthermore, the presence of 
pores in the LPBF samples adversely affects the tribological 
properties of CNTs/AlSi10Mg composites. As a result, the 
best performance of the composites is achieved when the CNT 
content is 1.0wt.%.

5 Conclusions
In this study, the impact of carbon nanotube (CNT) content on 
the hardness and tribological properties of CNTs/AlSi10Mg 
composites fabricated by laser powder bed fusion was 
investigated. The following conclusions are drawn:

(1) Uniform distribution of CNTs can be achieved through 
a colloidal mixing method. However, when CNT content 
exceeds 2.0wt.%, agglomerations become more pronounced 
due to the limited surface area of the matrix powder. As a 
result, the maximum CNT content for achieving homogeneous 
dispersion in composite powders is 2.0wt.%. 

(2) In CNTs/AlSi10Mg, CNTs are primarily distributed 
along the cellular matrix boundaries, with some reacting to 
form aluminum carbides. As the CNT content increases, a 
more complete CNT structure persists in the LPBF samples, 
resulting in a finer and more continuous microstructure. The 
length of CNTs in composites containing 1.0wt.% CNTs is 
approximately 200-300 nm, while in composites with 2.0wt.% 
CNTs, it ranges approximately 500-1,000 nm. The main 
mechanism for the shortening of CNTs is their reaction with 
aluminum.

(3) The hardness of the samples reaches its highest value, 
143.3 HV, when the CNT content is 1.0wt.% and the scan 
speed is 1,300 mm·s-1. The primary strengthening mechanisms 
contributing to the improvement in hardness are the pinning 
effect, the Orowan mechanism, and the Hall-Petch effect. 
However, when the CNT content exceeds 1.0wt.%, the increase 
in porosity has a greater effect than the strengthening provided 

by the CNTs, leading to a decrease in hardness. Moreover, the 
optimal scan speed for CNTs/AlSi10Mg composites decreases 
as the CNT content increases, while other parameters remain 
constant.

(4) The wear mechanisms observed in the samples are 
adhesive wear and abrasive wear. Material damage during the 
friction process is reduced as the CNT content increases. The 
coefficient of friction (CoF) of the samples decreases with 
increasing CNT content. At a CNT content of 2.0wt.%, the 
CoF and wear rate decrease to 0.37 and 0.82×10-3 mm3·Nm-1, 
respectively, which are approximately 14% and 30% lower 
than those of the unreinforced matrix. The self-lubricating 
properties of the CNTs significantly contribute to the improved 
friction performance. 
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