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1 Introduction
Counter pressure casting, a type of anti-gravity 
casting, plays a critical role in diverse industrial 
sectors, particularly in aviation, defense, and railway 
manufacturing [1-2]. The casting process involves two 
primary stages: mold filling with molten metal and 
subsequent solidification. Inadequate design of the 
gating system or improper pouring methods can lead 
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to severe defects, significantly compromising casting 
quality. These defects may include shrinkage cavities, 
porosity, and cold shuts [3-9]. 

Current mainstream research utilizes empirical formulas 
to determine gating system dimensions in conjunction 
with computer numerical simulations to optimize 
process parameters and predict potential defects. This 
approach seeks to establish optimal process plans and 
reduce casting production costs [10-11]. Jiang et al. [12]

developed three optimized gating system designs based 
on trial production results of a support component. 
They further refined the gating system parameters 
through numerical simulations, ultimately determining 
the optimal pouring process that was subsequently 
validated in actual production. Wang et al. [13] designed 
a combination of bottom injection and slit gating system 
for low-pressure casting of aluminum alloy thin-walled
shells, employing numerical simulation and other means 
to optimize the casting process parameters. The results 
showed that the optimized aluminum alloy thin-walled
shells were free of shrinkage and porosity defects and 
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the mechanical properties of the castings were significantly 
improved. Andrzej et al. [14] improved an existing gating system 
using MAGMAsoft software for casting process simulation. 
This approach enabled optimization of process parameters, 
which were subsequently validated through experiments, 
demonstrating their suitability for industrial production.

To meet the demands of industrial production, counter 
pressure casting processes require high precision, high efficiency, 
and intelligent design [15]. However, the traditional approach of 
iteratively modifying the gating system to eliminate potential 
casting defects often results in inefficient trial-and-error cycles [16].
Furthermore, traditional empirical formula methods fail to 
adequately address the design of straight sprue diameter 
dimensions in slit gating system for counter pressure casting [17-19].
The basic concept of material genetic engineering is to change 
the traditional “trial-and-error” research mode. Instead, it aims 
to develop a new R&D paradigm that deeply integrates “rational 
design”, “efficient experimentation”, and “big data technology”, 
along with collaborative innovation [20]. Building upon this 
concept, the integration of domain-specific material knowledge 
with machine learning techniques enables the construction 
of data-driven models. These models, incorporating big data 
analysis, design, and prediction capabilities, offer innovative 
approaches to material processing [21].

Zhou et al. [22] developed a two-stage optimization process 
for counter pressure casting of steering knuckles. In the first 
stage, they employed group simulation techniques to identify 
key parameters influencing casting quality. Subsequently, 
they utilized a hybrid approach combining back-propagation 
neural networks and the artificial fish swarm algorithm to 
determine optimal process parameters that minimize defects. 
Yu et al. [23] developed a data-driven framework to optimize 
gating systems in investment casting. Utilizing a radial basis 
function optimization algorithm, they designed an efficient 
gating system that simultaneously reduced porosity defects and 
improved yield in castings. Wang et al. [24] developed a gating 
system optimization method using a fruit fly algorithm-based 
casting simulation technology. They established a geometric 
model of the gating system. Furthermore, they optimized 
the dimensions of the upper center plate gating system using 
the fruit fly optimization algorithm. Experimental results 
demonstrated reduced surface porosity and elimination of 
internal porosity in the castings.

However, the accuracy of machine learning models is 
dependent on dataset quality, with the current research often 
aiming to address quality issues by increasing data quantity [25-27].
But, in the field of casting, both the experimental and the 
simulation approaches are extremely time-consuming [28-29]. 
Furthermore, given the multitude of parameters involved in 
gating system design, the judicious selection of appropriate 
machine learning models is crucial [30]. In this study, the process 
parameters range from previous counter pressure casting 
literature were referenced. Traditional empirical formulas were 
used to calculate the range of the sizes of gating system, while 
design guidelines for closed gating systems were employed 

to determine the straight sprue sizes. An orthogonal method 
was utilized to construct a high-quality dataset. The porosity, 
pouring temperature, and filling pressure served as inputs to the 
model, with the straight sprue size, inner gate size, and number 
of sprues being the prediction objects. These parameters were 
used to find the optimal values by constructing a gated recurrent 
unit (GRU) model and an elastic network model for prediction. 
The flow field, solidification process, and shrinkage distribution 
were compared and analyzed using EasyCast and ProCAST 
software for gating systems designed by the empirical method 
and those optimized by the machine learning model. The model’s 
performance was evaluated using the mean squared error (MSE) 
and the coefficient of determination.

2 Characteristics of castings and 
research methodology

This study employs machine learning techniques to design 
the gating system dimensions for a large-scale thin-walled 
cabin. As shown in Fig. 1, the conical casting has the sizes of 
Φ317 mm×544 mm and a height of 806 mm. It has a complex 
internal structure with many tabs and reinforcement bars, and 
the average wall thickness is around 15 mm. The material 
selected is ZL101.

Fig. 1: Conical casting (a) and its sectional (b-d) and 
top (e) views

(a) (b)

(d)

(c)

(e)

This study proposes a strategy that integrates empirical 
design with machine learning to optimize the dimensioning 
of the gating system. The detailed framework is illustrated in 
Fig. 2. The strategy is based on empirical formulations and 
numerical simulations. High-quality datasets were established 
through orthogonal experiments, and features were screened 
using Spearman correlation analysis. Models were constructed 
and gating system dimensions were predicted based on GRU 
and elastic networks. Subsequently, defect distributions were 
analyzed using numerical simulation software.

2.1 Data collection
A high-quality dataset is fundamental for achieving high 
accuracy in machine learning models [30]. In order to ensure 
that the machine learning model can effectively capture the 
nonlinear relationships between inputs and outputs, this study 
will acquire data through the following three steps.
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Fig. 2: Schematic of machine learning workflow 

Table 1: Process parameters and their ranges

Filling pressure
(kPa)

Crystallization booster pressure 
(kPa)

Crystallization time
(s)

Pouring temperature
(°C)

40-70 40-70 300-600 680-710

2.1.1 Literature statistics

To gather relevant data for this study, a literature review 
of recent counterpressure casting research was conducted, 
focusing on castings with a height of approximately 800 mm.
The casting process parameter values were statistically 

analyzed and verified to ensure accuracy. Data completeness 
was ensured through appropriate data expansion techniques to 
fill any gaps in the dataset. The specific ranges of the casting 
process parameters are presented in Table 1.

2.1.2 Design of gating system dimensional data by empirical 
methods

Usually, the parameters of the slot gating system are calculated 
according to the following empirical equations [31]:

                                 n = (0.016-0.028)S/δ                              (1)

                                δ = (0.8-1.5)S/δcasting                                (2)

                                 b = 15-35 mm                                         (3)

                                d = (4-6)δ                                                (4)
where

n: the number of sprues;
S: the circumference of the casting shape;
δ: the thickness of the inner gate in the gap;
b: the width of the inner gate in the gap;
d: the diameter of the inner gate. 
For anti-gravity casting, the inner gate not only imports the 

metal liquid but also plays the role of feeding. To determine 
the cross-sectional area of the inner gate during the design 
phase, the riser calculation method was employed [32]. For the 
aluminum alloy ZL101, which is commonly used in anti-gravity
casting, the design guidelines for a closed gating system are as 
following:

(5)

: inner gate cross-sectional area;

: cross-sectional area of the horizontal runner;

: cross-sectional area of the straight sprue.
By using the above Eqs. (1) to (4), three parameters: number 

of sprues, straight sprue diameter, and inner gate diameter 
were selected as part of the data set for this study, with the 
specific ranges shown in Table 2.

Table 2: Range of gating system size

Number of 
sprues

Inner gate
diameter

Straight sprue 
diameter

3-6 60-90 mm Determined by closed gating 
system design guidelines

2.1.3 Construction of data sets using orthogonal tables

The number of sprues is between 3 and 6 calculated according 
to the empirical design method mentioned above. Therefore, 
only 28 groups of data could be established using an orthogonal 
experiments at the 7-factors and 4-levels. To prevent the 
overfitting phenomenon caused by an insufficient amount of 
data, a mixed orthogonal table (77 groups) was employed. 
As shown in Table 3, 77 groups of data were established by 
7-factor mixing level, and then the corresponding defect 
volume as well as other variables (casting volume, filling 
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Fig. 3: Internal structure of GRU

Table 3: Example of a mixed orthogonal table

HTC
(W·m-2·K-1)

Filling
pressure 

(kPa)

Crystallization 
booster pressure 

(kPa)

Pouring 
temperature

(°C)

Holding time
(s)

Number 
of sprues

Inner gate 
diameter 

(mm)

L-1 750 40 40 680 300 3 60

L-2 900 45 45 690 350 4 65

L-3 1,000 50 50 700 400 5 70

L-4 2,000 55 55 710 450 6 75

L-5 60 60 500 80

L-6 65 65 550 85

L-7 70 70 600 90

Factors

Levels

time, etc.) were obtained by group simulation and simulation 
calculation for each group of experiments.

The overfitting phenomenon can be effectively reduced by 
the mixed orthogonal experiment established by selecting seven 
levels of the four factors, namely, filling pressure, crystallization 
booster pressure, holding time, and inner gate diameter. In 
combination with numerical simulations and general rules for 
the design of closed gating systems, a high-quality dataset can 
be created that allows for efficient parametric design.

2.2 Feature screening
High-quality features provide more accurate and comprehensive 
information, which can improve model accuracy. Therefore, 
feature selection is necessary to eliminate irrelevant or redundant 
features. Since the relationship between features and the target 
variable is often nonlinear, Spearman’s correlation coefficient, 
which can capture nonlinear relationships, was chosen for 
feature selection. Spearman’s correlation analysis assumes 
that two random variables, X and Y, with the same number of 
elements N, are considered. The ith (1≤i≤n) value is randomly 
selected and denoted by xi, yi respectively. Sorting X and Y 
yields two ranked sets x and y, where elements xi, yi represent 
the rankings of Xi in X and Yi in Y, respectively. The Spearman’s 
correlation coefficient (ρ) between the random variables X and Y 
can be calculated using the ranking differences, denoted as d [33].
The equation for computing ρ is as follows:

(6)

where di denotes the rank difference between Xi and Yi; n 
represents the total number of observed samples.

2.3 Model selection and construction
In this study, different models were used for prediction based 
on the characteristics of data distribution. 

2.3.1 GRU model

For the case of more uniform data distribution, the gated 
recurrent unit (GRU) model was selected for prediction. GRU, 

is a variant of recurrent neural networks. Compared with 
traditional RNN and LSTM, GRU has lower computational 
complexity and fewer parameters [34], and during the training 
process, parameters such as learning rate can be adjusted to 
make the training of the model easier. Figure 3 shows the 
internal unit structure in GRU, where ht-1 is the hidden state at 
the previous moment, ht is the hidden state output at the current 
moment,  is candidate hidden state, and xt is the data input at 
the current moment [34].

The specific forward propagation equations are as follows [34]:

(7)

(8)

(9)

(10)

Wxr: weight matrix of the input layer to the update gate;
Whr: weight matrix of the hidden state to the update gate;
Wxz: weight matrix of the input layer to the reset gate;
Whz: weight matrix from hidden state to reset gate;
Wxh: weight matrix of input layer to hidden states;
Whh: weight matrix of connections between hidden states;
σ: can transform data into values within the range of 0 to 1;
tanh: can transform data into values within the range of -1 to 1; 
br, bz, bh: are the bias vectors of the hidden units of the 

xr hr

xz hz

hhxh



 399

CHINA  FOUNDRYVol. 22 No. 4 July 2025
Research & Development

Fig. 4: GRU-DNN model

(11)

update gate and the reset gate, respectively.
Furthermore, rt is the reset gate, which determines how the 

new input information is combined with the previous memory. 
The smaller the value of rt, the more the previous moment needs 
to be forgotten and the more it is discarded. zt is the update 
gate, which is used to control the extent to which the previous 
moment’s state information has been brought into the current 
state. When zt is close to 1, it indicates that more data have been 
“remembered”; conversly, when zt is close to 0, it signifies that 
more data have been “forgotten”. 

2.3.2 Elastic networks

Elastic network is a linear regression algorithm that combines 
two regularization methods, Lasso (L1 regularization) and Ridge 
regression (L2 regularization) [35]. Its main purpose is to avoid 
problems such as overfitting and unsolvability while retaining 
the advantages of linear regression (simple and effective linear 
model). This suits for prediction of straight sprue in this study.

The elastic network controls the complexity of the model by 
introducing L1 and L2 regularization terms in the loss function, 
and balances the weights of these two regularization terms in 
the optimization process. Among them, the L1 regularization 
term can reduce some unimportant feature coefficients to 0 and 
play the role of feature selection; while the L2 regularization 
term can smooth the weight of the coefficients to prevent the 
coefficients from varying too drastically, which has a certain 
degree of noise reduction ability.

The elastic network regression problem can be solved by the 
following equation:

›: the coefficient vector of the elastic net regression 
estimator;

yi: the actual value of the target variable for the ith observation;
β0: the intercept term in the regression model;
xij: the jth feature value for the -ith observation;
βj: the coefficient corresponding to the -jth feature;
N: the total number of observations in the dataset;
p: the total number of features (or predictors) in the model;
λ1 and λ2: the penalty parameters. 
When λ1=0 and λ2=0, the regression model is least squares 

regression; when 1=0 and λ2>0, the regression model is Ridge 
regression; when λ1>0 and λ2=0, the regression model is Lasso 
regression; and when λ1>0 and λ2>0, the regression model is 
elastic network regression [36].

2.3.3 Modeling

To eliminate the effects of different features due to different 
attributes, the data are standardized to make it dimensionless. 
The specific standardization equation is as follows:

The dataset is partitioned into training and validation sets using 
a 4:1 ratio. The model accuracy is evaluated using the mean 
squared error (MSE) and the coefficient of determination (R2).
The specific equation is given below:

(12)

(13)

(14)

MSE

where µ is the sample mean, σ is the sample standard 
deviation, xi is the original data, and xn is the transformed data.

›

where Ytrue is the true value of the sample, Ypre is the predicted 
value of the model, and  is the sample mean. The smaller 
the value of MSE, the smaller the difference between the 
predicted value of the model and the true value, the better the 
performance of the model.

The model is built based on GRU and deep neural networks 
(DNN). The number of units in the GRU layer is set to 100. 
Input data are organized in sequences of 7-time steps, where 
each sequence captures information spanning 7-time steps. 
This means that the model will receive a feature value at each 
time step and process the input sequence after 7-time steps. 
The feature dimension of the input sequence at each time step 
is 2 (i.e., the output at that moment). Then, after obtaining the 
hidden layer output of the last time step of the GRU module, 
it is fed into the DNN to perform dimension transformation. 
This process firstly increases the network output dimension 
from 100 to 128, then, reduces it from 128 to 64, and finally, 
decreases it to the output dimension of 2. In order to enhance 
the learning ability of the model, it is possible to appropriately 
increase the number of DNN layers, and to use the rectified 
linear unit (ReLU) as the activation function of the hidden layer 
to improve the learning efficiency.

The structure of the final constructed GRU-DNN model is 
shown in Fig. 4, where xt is the input for time step t;  is the 
hidden state of the GRU module at time step t;  is the ith 
hidden unit of the lth layer of the DNN module; fReLU=max(x, 0)
is a linear activation function. It serves to limit the input 
values to non-negative ranges and has a linear nature on the 
positive semi-axis, which can enhance the model nonlinear 
capability.
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Table 4: Choosing the best hyperparameters for elastic network

Hyperparameter Hyperparameter range Optimal 
hyperparameters

alpha [0.01, 0.1, 0.15, 0.5, 0.75, 1] 0.15

L1_ratio [0.001, 0.01, 0.1, 0.5, 0.75, 1] False

fit_intercept [True, false] 0.01

max_iter [1,000; 1,500; 2,000; 2,500; 3,000] 2,000

For the prediction of the straight sprue, an elastic network model was 
used to find the optimal parameters by searching the hyperparameters 
through a grid search, as shown in Table 4.

Fig. 5: Prediction accuracy of the GRU model: 
(a) inner gate diameter; (b) number of 
sprue

Fig. 6: Prediction of straight sprue diameter by 
elastic net

(a)

(b)

3.2.2 Comparative analysis of the methods

To evaluate the model’s predictive performance, 
the dimensions of the gating system for this casting 
were compared with those obtained using empirical 
formulas. The same process parameters were used as 
inputs for both the model and the empirical method. 
The model’s predicted gating system dimensions 
are then compared with the results calculated using 
the empirical formulas. EasyCast [7] and ProCAST 
casting numerical simulation softwares were used 
to calculate the flow field, solidification field, and 
defect distribution. EasyCast software utilizes the 
finite difference method to calculate heat transfer 
and volume changes, enhancing the accuracy of 
predictions for casting shrinkage and porosity [13]. 
The specific parameters are shown in Tables 7 and 8.Grid search is a method that, by traversing all permutations of the 

input parameters, returns the evaluation metric scores for all parameter 
combinations through cross-validation. In this model, a value of 0.15 
for alpha indicates a smaller regularization strength. fit_intercept of 
false indicates that the model will not learn the intercept and the fitted 
line will pass through the origin. When L1_ratio is 1, the model uses 
only L1 regularization (Lasso) and when L1_ratio is 0, the model uses 
only L2 regularization (Ridge). In this model, a value of 0.01 for L1_
ratio indicates a smaller percentage of L1 regularization. The maximum 
number of iterations for model training is 2,000.

3 Results and analysis
3.1 Model accuracy
Following model optimization, the coefficient of determination (R2)
was used to assess the model accuracy. As shown in Figs. 5 and 6, the 
training and predicted data are centered around Y=X, and the R2 values 
for the outputs (straight sprue diameter, inner gate diameter, number of 
sprues) are: 0.982, 0.856, and 0.820. This indicates that the model is 
well fitted and has good predictive ability for the target variables. For 
the straight sprue diameter, the predicted R2 value is only 0.82, and the 
reasons for this relatively low value are analyzed as follows: (1) The 
dataset size: the small number of datasets may not fully capture the 
nonlinear relationship between the input features and the straight sprue 
diameter; (2) The features used in this study may be more suitable for 
predicting the number of sprues or the inner gate diameter, but less 
effective for predicting the straight sprue diameter.

3.2 Grid independence verification and method 
analysis

3.2.1 Grid independence verification

Grid independence verification is essential to ensure the reliability and 
reproducibility of results in numerical simulations. Therefore, a grid 
independence analysis was performed to determine the appropriate 
number of meshes for maintaining computational accuracy. As shown in 
Tables 5 and 6, when the number of volume mesh elements is increased 
from 1.7 million to 5.2 million, the changes in porosity and defect volume 
of the castings remain relatively stable. To balance simulation efficiency 
and accuracy, subsequent calculations employ the mesh configuration of 
Case 3, with the final grid chart depicted in Fig. 7.
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Table 5: Independence verification of grid with empirical formula approach

Table 6: Independence verification of grid with machine learning models 

Cases Number of surface grids Number of volume grids Porosity (%) Defect volume (cm3)

1 56,471 602,869 1.527 7.05

2 105,344 1,041,169 2.573 4.68

3 130,450 1,749,456 3.143 2.06

4 288,694 5,193,869 3.175 2.23

Cases Number of surface grids Number of volume grids Porosity (%) Defect volume (cm3)

1 55,366 606,367 1.986 16.576

2 106,894 1,100,698 2.974 13.257

3 133,126 1,784,446 3.358 11.238

4 305,672 5,272,561 3.381 11.457

Fig. 7: Empirical formula approach (a) and machine learning models (b) 

Using EasyCast and ProCAST softwares to simulate 
the casting flow field, solidification process, and defects, 
respectively, as shown in Figs. 8 and 9, it can be seen the 
casting built by the machine learning model fills smoothly. 

The length and distribution of the velocity vectors in Fig. 10 
are relatively regular, with small changes in magnitude and 
direction. Therefore, the casting is smoothly filled throughout 
the process, and there is no turbulence in the cavity. This 

Table 7: Counter pressure casting process parameters

Lifting 
pressure 

(kPa)

Lifting time 
(s)

Filling 
pressure 

(kPa)

Filling time
(s)

Crust 
pressurization 
pressure (kPa)

Crystallization 
booster pressure 

(kPa)

Holding time
(s)

Pouring 
temperature

(°C)

HTC
(W·m-2·K-1)

15 15 55 7 4 40 300 700 2,000

(a) (b)

Table 8: Design of gating system dimensions using empirical formulations and model prediction

Methods Number of sprue Inner gate diameter (mm) Straight sprue diameter (mm)

Empirical formulations 6 60 80

Model prediction 4.79 (5) 94.17 (94) 114.32 (114)
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Fig. 8: Simulation results of flow field in EasyCast: (a) filling 40%; (b) filling 60%; (c) filling 80%; (d) filling 100% 

Fig. 9: Simulation results of flow field in ProCast: (a) filling 40%; (b) filling 60%; (c) filling 80%; (d) filling 100%

Fig. 10: Velocity vector analysis during the filling process (a-f) showing the velocity vector distribution for 
different filling times

smooth filling process effectively prevents the alloy liquid 
from experiencing secondary pumping and the formation of 
oxidized inclusions. In Figs. 11-12, the solidification sequence 
is essentially the same for castings, as well as gating systems, 
simulated using different softwares. The solidification process 
of the casting begins at the thin wall adjacent to the inner gate 
and concludes at the gap gating, ensuring smooth filling and 
unobstructed solidification channels.

Figures 13-14 show the shrinkage cavities distribution of 
castings designed using two different methods. Figures 13(a)
and 14(a) display the defect distribution in castings with 
gating systems designed using the empirical method, while 

Figs. 13(b) and 14(b) show the defect distribution in castings 
with gating systems optimized using the machine learning 
model.

It can be seen that Figs. 13(b) and 14(b) show fewer 
shrinkage cavities, which are mainly concentrated within the 
casting, with smaller shrinkage cavities observed in the internal 
regions and at the boss areas. Reducing the number of sprue 
channels results in a more centralized flow path for the liquid 
metal and reduced flow resistance. In addition, increasing the 
diameter of the inner gate allows the liquid metal to enter the 
cavity more uniformly. As a result, the temperature distribution 
in the cavity becomes more even. This contributes to creating 

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

(a) (b) (c)

(d) (e) (f)
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Fig. 11: Solidification results of flow field in EasyCast: (a) solidification 10%; (b) solidification 30%; 
(c) solidification 50%; (d) solidification 70%

Fig. 12: Solidification results of flow field in ProCAST: (a) solidification 10%; (b) solidification 30%; 
(c) solidification 50%; (d) solidification 70%

Fig. 13: Defects in different gating systems simulated 
using EasyCast: (a) empirical formula approach; 
(b) machine learning models

Fig. 14: Defects in different gatting systems simulated 
using ProCast: (a) empirical formula approach; 
(b) machine learning models

(a) (b) (c) (d)

(a) (b) (c) (d)

more consistent solidification conditions. Additionally, 
increasing the diameter of the straight sprue not only 
improves flow but also enhances shrinkage feeding. 
More liquid metal can be supplied during solidification, 
thus reducing the formation of shrinkage porosity. 

The results in Figs. 13 and 14 indicate that both 
EasyCast and ProCAST softwares predict the formation of 
shrinkage holes at approximately the same locations, with 
a similar defect distribution. Therefore, the reliability of 
the machine-learning-designed gating system was verified 
by using both EasyCast and ProCAST, and the results 
demonstrate that the machine-learning-designed gating 
system can reduce shrinkage.

3.3 Optimization process and result  
       analysis
To reduce the formation of shrinkage cavities, ensure 
higher casting quality, and meet product performance 
requirements, the optimization focuses on the two 
main areas where shrinkage cavities are concentrated: 
the internal regions and the boss areas. Based on the 
simulation results of the initial design, the addition of 
internal cooling channels is prioritized to improve the 
solidification process by enhancing heat dissipation and 
ensuring more uniform cooling. As shown in Fig. 15, the 
shrinkage cavities within the casting are eliminated after 
incorporating the internal cooling channels.

(a) (b)

(a) (b)
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Fig. 15: Defect distribution after design and optimization of 
internal chill

the higher the positive correlation between the two covariates, 
while the moderate correlation level ±0.75 is considered as the 
threshold value [33]. In the illustration, the correlation between 
filling time and filling pressure is -0.92, which exceeds the 
threshold value. Therefore, the features with high correlation 
need to be eliminated, and between filling time and filling 
pressure, only one should be retained.

For machine learning input features, the more representative 
the screened features are, the closer the correlation between 
different features is to 0. As shown in Fig. 16, the filling time 
has minimal impact on the defect volume. Only the filling 
pressure exhibits a positive correlation with the defect volume. 
This correlation can be attributed to the fact that increased filling 
pressure causes turbulence in the metal liquid during the filling 
process, consequently leading to an increase in defect volume.

4.2 Effect of input features on individual 
output features

Given the non-normal nature of the data, Spearman correlation 
analysis was chosen for feature selection to study the effect 
of input features on output features. As shown in Figs. 17-19, 
the degree of correlation between different input features and 
each output feature ranges from -1 to 1. A value closer to 1 
indicates a stronger positive correlation, while a value closer 
to -1 indicates a stronger negative correlation.

The gating system parameters are influenced by multiple 
factors, with each feature having a different impact on the 
output characteristics. As shown in Figs. 17-19, for this 
machine learning model, the casting volume has the greatest 
influence on the gating system, followed by the defect volume, 
which is negatively correlated. This analysis indicates that 

Fig. 16: Spearman correlation coefficient matrix plot, where purple represents positive correlation, blue represents 
negative correlation; the flatter the ellipse, the larger the value; asterisks (*) indicate significance, determined 
based on significance levels, displaying *, **, and *** for p-values less than 0.05, 0.01, and 0.001, respectively

4 Impact of different inputs on outputs 
based on machine learning

4.1 Correlations between different features
Correlation analysis is an important step in the feature selection 
process to assess the degree of association between features and 
target variables. For machine learning models, the correlation 
between different features can also be assessed. Since the 
features do not have a linear relationship with each other, 
Spearman correlation was chosen to analyze the correlation 
between different features, as shown in the Fig. 16.

The correlation between the different features can be derived 
by the Spearman correlation shown in Fig. 16, which takes a 
value between -1 and 1. The magnitude of the value represents 
the degree of correlation, and the closer the value is to 1 means 
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Fig. 18: Correlation between input features and number 
of sprues

Fig. 19: Correlation between input features and size of 
inner gate

when the size of gating system is increased, the value of the 
defect volume decreases. This is because that increasing the 
gating system size will make the liquid metal filling smoother, 
thus reducing defects, assuming the process parameters are 
kept constant. In Fig. 17, the holding time feature has the least 
influence on the sprue size. In Fig. 18, the pouring temperature 
has the least influence on the number of sprues. In Fig. 19, the 
filling time has the least effect on the inner gate dimensions.

5 Conclusions
A prediction model for the dimensions design of gating 
system was developed using machine learning, with a dataset 
constructed based on empirical design and numerical simulations. 

The dataset was then rigorously tested and analyzed using 
orthogonal tests to ensure comprehensive evaluation. Spearman 
correlation analysis was applied to identify high-quality
data, thereby enhancing the model’s accuracy. The flow field, 
solidification process, and shrinkage distribution were compared 
and analyzed using EasyCast and ProCAST software for gating 
systems designed by the empirical method and those optimized 
by the machine learning model. The model’s performance was 
evaluated using MSE and R2. The following conclusions can be 
drawn:

(1) The prediction accuracies for the dimensions of the 
gating system, based on the machine learning model, are 0.982, 
0.856, and 0.820. The specific dimensions of the gating system 
for the prediction model are as follows: the diameter of the 
straight sprue is 114 mm, the number of sprue is 5, and the 
diameter of the inner gate is 94 mm.

(2) The gating system established by the machine learning 
model can achieve smooth mold filling, top-down sequential 
solidification, resulting in smaller shrinkage cavities. It indicates 
that this method is suitable for the design of gating systems 
of counter pressure casting and facilitates the development of 
intelligent design strategies in casting processes.

(3) There are slight differences in quantities of shrinkage 
cavities predicted by the two methods (empirical design method 
and machine learning model) when analyzed using EasyCast and 
ProCAST software, but the overall distribution of the shrinkage 
cavities is similar.
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