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1 Introduction
With the rapid development of industries, notably 
aerospace, the demand for castings like engine casings 
and turbine blades has sharply increased, thereby placing 
higher performance requirements on these components [1-3].
These castings typically feature complex cavities and 
hollow thin-walled structures, along with slender bends 
and hidden slots, necessitating the use of cores during the 
casting process [4-6]. Traditional core forming processes, 
such as injection molding, isostatic pressing, and gel 
injection molding, require molds for preparation of 
the cores, leading to long production cycles and low 
efficiency [7, 8]. They also have significant limitations 
when forming large and complex structural cores. 
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Additionally, the cores prepared by traditional materials 
such as Al2O3 and SiO2 need to be removed by 
mechanical vibration, alkali corrosion, or other methods. 
These processes are challenging to achieve ideal results 
on cores within internal bending channels, and the lye 
can cause surface corrosion on the castings, affecting 
their quality. This significantly restricts the application 
of ceramic cores in casting production [9-13].

To address the issue of difficult core removal, 
water-soluble cores have been gradually introduced 
into casting production. The water-soluble cores mainly 
include water-soluble salt cores and water-soluble 
ceramic cores [14, 15]. The water-soluble salt cores can be 
removed through dissolution, achieving ideal removal 
effects. However, their low strength and high brittleness 
limit their applications [16, 17]. Although the water-soluble 
ceramic cores, such as CaO-based ceramic cores, have 
good performance and are easy to remove, CaO is prone 
to absorbing water and dehydrating, causing significant 
issues in core preparation and storage. This also restricts 
the further application of water-soluble CaO ceramic 
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Fig. 2: Ceramic core samples prepared by stereolithography process (a-c) [45] 

Fig. 1: Schematic diagram of stereolithography 
technology [43] 

cores in casting production. Calcium carbonate (CaCO3) comes 
from a wide range of sources and is decomposed into CaO at 
high temperatures. Ceramic cores prepared using CaCO3 as 
raw materials exhibit good collapsibility after sintering, but 
relatively few research works can be found in related aspects.

In recent years, the rapid development of additive manufacturing 
technologies has provided new avenues for the preparation of 
complex cores [18-21]. Additive manufacturing is an advanced 
manufacturing method that uses a computer to slice a three-
dimensional model of a part and then prints the part by depositing 
materials layer by layer [22-24]. Compared to traditional techniques, 
the additive manufacturing offers numerous advantages such 
as high customization, short production cycles, and the ability 
to produce parts with complex geometries [25-30]. Additive 
manufacturing technology does not need mold, can realize the 
direct forming of complex core, simplify the preparation process, 
reduce the production time and cost [31-36], these advantages 
position additive manufacturing technology as increasingly 
crucial in the field of ceramic core forming technology. 
Currently, the main additive manufacturing technologies for the 
core production include: stereolithography [37], selective laser 
sintering (SLS) [38], direct ink writing [39], and binder jetting [40] 
technologies. This is conducive to promoting the application of 
ceramic cores in casting production.

This review initially introduces various additive manufacturing 
technologies, then discusses how these technologies are 
employed in the preparation of ceramic cores. Furthermore, it 
elaborates on the process of producing soluble ceramic cores 
using additive manufacturing technology and examines the 
influence of additive manufacturing process parameters on 
the microstructure and properties of ceramic cores. Finally, it 
discusses the existing challenges faced by different additive 
manufacturing techniques and ceramic materials in the 
production of soluble ceramic cores.

2 Preparation of ceramic cores via 
additive manufacturing technology

2.1 Preparation of ceramic cores via 
stereolithography

Stereolithography technology is an additive manufacturing 
technique that utilizes the curing of photosensitive resins upon 

exposure to specific light sources to create three-dimensional 
objects through layer-by-layer printing [41, 42]. The process flow 
chart of the stereolithography technology is shown in Fig. 1. 
This technology achieves high precision in part formation and 
can produce cores with complex structures. It has already been 
applied to core preparation. 

Li et al. [44] prepared alumina ceramic slurries with a solid 
content of 80vol.% using three different powder grades: coarse, 
medium, and fine, and studied the effect of powder grade design 
on the performance of ceramic cores. The alumina ceramic 
cores prepared using stereolithography technology are shown in 
Fig. 2. The results indicated that when the mass ratio of coarse, 
medium, and fine particles in the ceramic slurry is 2:1:1 and the 
sintering temperature is 1,600 °C, the resulting alumina ceramic 
core exhibits an open porosity of 36.4%, a high-temperature 
deflection thickness of 2.27 mm, and a flexural strength of 
50.1 MPa. This study presents a new method for preparing 
high-porosity ceramic cores with moderate strength and 
low high-temperature deformation using stereolithography 
technology.

Using stereolithography technology can rapidly form 
complex structured ceramic cores, shortening the preparation 
cycle. However, it still faces challenges such as significant 
shrinkage and cracking during the sintering of the ceramic 
cores, high cost of photosensitive resins, low surface accuracy 
of the cores, and considerable sintering shrinkage. Further 
research works on slurry formulations and specific debinding 
and sintering processes are needed to promote the industrial 
application of stereolithography technology.

(a) (b) (c)
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Fig. 3: Schematic diagram showing the process of preparing aluminum-based ceramics 
by SLS combined with sol infiltration [46] 

2.2 Preparation of ceramic cores via SLS
Selective laser sintering (SLS) is an additive manufacturing 
technology that uses a high-energy laser beam to selectively 
sinter powders according to the part’s geometry, thereby 
obtaining the desired part [46, 47]. The schematic diagram of the 
SLS technology process is shown in Fig. 3. The SLS technology 
can address the shortcomings present in traditional core 
manufacturing techniques, such as limitations of complex shapes, 
high material waste, and environmental pollution problem, 
enabling the production of the cores with complex shapes.

The ceramic cores directly prepared by SLS technology have 
relatively low strength. To enhance their strength, post-processing
methods such as sol infiltration and high-temperature sintering 
are generally employed. Zeng et al. [48] prepared high-strength, 
low-shrinkage ceramic cores by infiltrating alumina ceramic 
core green bodies with nanoscale alumina sol and silica sol. The 
results showed that after these two infiltration treatments, the 
pores within the cores were filled with particles from the sol, and 
mullite reinforcement phases were produced. The porosity of the 
ceramic cores decreased from 44.7% to 35.3%, and the bending 
strength increased from 8.2 MPa to 12.6 MPa.

The SLS technology has the advantages of being able to 
form large and complex structural cores without requiring 
support structures and having a high utilization rate of raw 
materials [49, 50]. However, issues such as high initial investment 
costs for equipment, difficult maintenance, and low initial 
strength of the formed green cores limit its wide applications 
in preparation of cores.

2.3 Preparation of ceramic cores via direct ink 
writing

The direct ink writing technology is an additive manufacturing 
technique that uses slurries for part printing. During the 
printing process, computer software controls the deposition 
of the slurry at specified locations on the part, followed by 
layer-by-layer stacking until the part is completed [51, 52]. Figure 4
illustrates the workflow of direct ink writing technology.

To address the issue of high surface roughness in ceramic 
cores prepared by direct ink writing technology, Tang et al. [54]

investigated the effects of slurry composition and process 
parameters on the performance of ceramic cores. The results 
indicated that the optimal slurry composition was: 50vol.% 

Fig. 4: Schematic diagram of the process of preparing ceramic cores by direct ink writing [51]
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Fig. 5: Diagram of binder jertting technology [61]

Al2O3, 1.5wt.% acetic acid dispersant, and 2wt.% methyl 
cellulose aqueous solution. The optimal processing conditions 
were: printing speed of 15 mm·s-1, nozzle diameter of 0.40 mm,
and a layer height of 70% of the nozzle diameter. Under these 
optimal conditions, the prepared ceramic cores exhibited 
uniform structure and a surface roughness of 0.75 μm, 
significantly improving the surface quality of the ceramic cores.

The direct ink writing technology does not require external 
energy sources such as lasers or UV light and can form 
complex shapes at room temperature. It has low equipment 
costs and allows for the simultaneous printing of multiple 
materials. Moreover, the typical high solid content of ceramic 
slurries results in low drying and sintering shrinkage rates of 
the ceramic cores. Therefore, the direct ink writing technology 
is widely used in preparation of ceramic cores.

2.4 Preparation of ceramic cores via binder 
jetting

The binder jetting technology has developed rapidly in recent 
years due to its unique advantages. It can automatically slice 
the three-dimensional model of a part and control the jetting 
and motion systems of the printer to complete the powder 
spreading and binder jetting commands, repeating this process 
until the entire ceramic core is printed [55-57]. The schematic 
diagram in Fig. 5 shows the workflow of binder jetting 
technology. Compared to the aforementioned technologies, the 
binder jetting technology requires less equipment investment, 
has a wide range of printing material sources, offers high 
production efficiency, and does not require support materials 
when forming large and complex parts, presenting broad 
prospects for development [58-60].

Fig. 6: Complex ceramic samples: (a) rose-shaped; 
(b) impeller-type shell [61]

(a) (b)

In the binder jetting technology, factors such as powder 
characteristics, binder, and printing process parameters all 
influence the strength of green body, microstructure, and the 
final performance of the formed parts [60-62]. Researchers have 
conducted relevant studies on these factors. Yang et al. [61]

added MnO2 sintering aids to Al2O3 powder and vacuum 
infiltrated the printed green body with TiO2 sol. After high-
temperature sintering, high-performance alumina-based 
ceramic parts were obtained. Figure 6 shows complex ceramic 
samples fabricated by binder jetting technology.

During the sintering process, a MnO-TiO2-Al2O3 system 
formed within the ceramics, significantly reduce the sintering 
temperature. The formation of MnTiO3 and MnAl2O4 in 

the system improved the bending strength of the ceramics. 
Compared with untreated alumina ceramics, the bending 
strength of alumina ceramics treated with sintering aids and 
vacuum infiltration increased by 48 times, and the sintered 
relative density increased by 41.85% [61].

By adding nanoparticles to the binder or treating the green 
body with infiltration, it is possible to effectively address the 
relatively low strength and density of ceramic parts prepared 
by the binder jetting technology, thus enabling the production 
of parts with ideal properties and promoting the application of 
the binder jetting technology in part fabrication.

The additive manufacturing technologies offer high design 
freedom and can form complex cavity structures. However, 
the stereolithography technology not only faces issues 
such as high material and equipment investment costs and 
difficult maintenance but also produces ceramic cores with 
significant dimensional shrinkage and poor high-temperature 
stability, creating many challenges for core-shell matching and 
high-temperature alloy casting. Similarly, the SLS technology 
faces problems such as high material and equipment investment 
costs and difficult maintenance, and the initial green cores 
formed by SLS technology have low strength, which is 
unfavorable for subsequent processing.

The direct ink writing technology can form complex shapes 
at room temperature, has low equipment costs, and can print 



 511

CHINA  FOUNDRYVol. 22 No. 5 September 2025
Special Review

multiple materials simultaneously. Moreover, high-solid-content
ceramic slurries can achieve low sintering shrinkage rates of 
the ceramic cores. Therefore, the direct ink writing technology 
is suitable for the preparation of the soluble ceramic cores. 
The binder jetting technology does not require external energy 
sources such as lasers or UV light, allows for the recycling 
of unused powders, thus reducing costs and improving 
manufacturing efficiency. It also eliminates the need for support 
structures during the forming process and has advantages such 
as fast forming speed, short forming cycles, and low material 
costs. Therefore, the binder jetting technology can also be used 
for the production of complex structured soluble ceramic 
cores.

3 Preparation of soluble ceramic 
cores via additive manufacturing 
technology

3.1 Preparation of soluble ceramic cores via 
direct ink writing

The direct ink writing technology has the advantages of high 
production efficiency, the ability to manufacture complex 
geometrical shapes and hollow structures, lower costs for both 
the forming equipment and materials, and ease of operation. 
Different soluble ceramic samples prepared by direct ink 
writing technology are shown in Fig. 7.

The selection of raw materials for the soluble ceramic cores 
is crucial. On the one hand, the ceramic cores must possess 
sufficient strength to withstand the impact of molten metal. On 
the other hand, the cores must contain soluble substances to 
ensure their solubility after sintering. Currently, CaO/CaCO3 

is the most common raw material for soluble ceramic cores 
because CaO-based ceramic cores can achieve a sintered 
strength of 10-25 MPa, meeting practical casting requirements, 
and CaO can react directly with water, ensuring good solubility 
of the ceramic cores [65-68].

Scholars have successfully prepared soluble ceramic cores 
using direct ink writing technology. However, the low surface 
accuracy of parts formed by direct ink writing technology can 
affect the surface quality of the casting. To address this issue, 
Mu et al. [69] used CaCO3 as the matrix material mixed with 
polyethylene glycol (PEG) solution to prepare ceramic slurries. 
They fabricated ceramic green bodies using a direct ink writing 
apparatus and adopted a stepwise regression method to fit a 
surface accuracy regression model, studying the effects of needle 
inner diameter, layer height-to-inner diameter ratio, and printing 
speed on the accuracy of the ceramic core green bodies, as shown 
in Fig. 8.

Research results indicate that the needle inner diameter is the 
primary factor affecting the accuracy of the ceramic core green 
bodies. The optimal needle inner diameter is 0.41 mm, with 
a layer height to inner diameter ratio of 0.75 and a printing 
speed of 29.87 mm·s-1. Ceramic core green bodies prepared 
using these process parameters exhibit a surface roughness of 
35.39 μm. The morphology of the 3D-printed ceramic green 
bodies with optimal process parameters is shown in Fig. 9.

Fig. 7: Different soluble ceramic samples prepared by 
direct ink writing technology: (a) CUG badge; 
(b) multi-structured ceramic core; (c) ceramic 
core with internal porous structure [65]

(a) (b)

(c)

Fig. 8: Modeling the effect of extruded filament build-up on 
the surface roughness of green bodies with different 
needle inner diameters (d1<d2, Δx1<Δx2) (a); effect 
of different layer height/inner diameter ratios on the 
surface morphology of ceramic green bodies (h1<h2, 
Δx1<Δx2) (b); effect of different printing speeds on 
extruded filaments (c): (c1) balanced extrusion; 

	 (c2) over extrusion; (c3) under extrusion [69] 

(a) (b)

(c)

(c1) (c2) (c3)

Fig. 9: Surface morphology of the 3D printed ceramic green 
body obtained with optimal process parameters [69] 
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To prevent soluble ceramic cores from absorbing moisture and 
deforming during storage or transportation, Mu et al. [65] added 
nano-ZrO2 powder to the CaCO3 matrix during production of 
water-resistant soluble ceramic cores using direct ink writing 
technology. Water-soluble rates of the CaO-based ceramic 
cores are shown in Fig. 10. 

The addition of ZrO2 enables the formation of CaZrO3 in the 
ceramic cores, which does not react with water, thus providing 
the fabricated ceramic cores with better resistance to hydration. 
At the same time, CaO remains within the ceramic cores, 
ensuring their solubility. Figure 11 illustrates mechanism for 
anti-hydration and water-soluble of the CaO-based ceramic 
cores [65].

Fig. 10: Water soluble rate of CaO-based ceramic cores 
with different nano-ZrO2 contents after sintered 
at 1,400 °C [65]

Fig. 12: Moisture absorption rate of ceramic cores 
sintered at 1,200 °C for 2 h [67]

Fig. 11: Mechanism diagram for anti-hydration and water-soluble of the CaO-based ceramic core modified 
with nano-ZrO2 [65]

When the addition amount of nano-ZrO2 powder is 10wt.%, 
the bending strength of the ceramic core reaches 11.68 MPa, 
with a shrinkage rate of 16.72%, a 48 h moisture absorption rate 
of 5.88%, and a water solubility of 4.21 g·s-1·m-2 at 60 °C [66]. 
This results in a high-strength, water-resistant soluble ceramic 
core suitable for the rapid casting of complex parts.

Yang et al. [67] used CaCO3 and SiO2 as raw materials to 
prepare soluble ceramic cores using direct ink writing technology. 
They studied the effect of the CaO-SiO2 molar ratio (C/S)
on the properties and dispersibility of the green body and 
sintered samples. The study found that as the C/S ratio increased, 
the moisture absorption rate of the soluble ceramic cores 
gradually increased. Change of moisture absorption rate of 
ceramic cores with storage time after sintered at 1,200 °C for 2 h
are presented in Fig. 12 [67].

The study found that when the C/S ratio is low, more Ca2SiO4 
is present in the sintered core. While, CaO is less abundant, 
resulting in enhanced strength and resistance to hydration of the 
core [66]. As the C/S ratio increases, the content of CaO rises. 
Because CaO is highly hygroscopic, this significantly reduces 
the water resistance of the soluble ceramic cores. By infiltrating 
a nano-ZrO2 dispersion, ZrO2 reacts with CaO to form CaZrO3, 
which is insoluble in water. This reduces the internal CaO 
content of the ceramic core and can effectively enhance the 
water resistance of the ceramic cores. The ceramic cores with 

a C/S ratio of 2.45 exhibit good dispersibility after sintering at 
1,200 °C. Moreover, the disintegration rate of the ceramic cores 
accelerates with an increase in water temperature, making them 
suitable as alternative cores for aluminum-magnesium alloy 
castings [65]. The collapsibility of ceramic cores with different 
C/S ratios after sintering at 1,200 °C for 2 h is shown in the 
Fig. 13 [67].

Scholars have optimized parameters such as needle inner 
diameter, layer height-to-inner diameter ratio, and printing 
speed to address the issue of low surface accuracy in soluble 
ceramic cores prepared by direct ink writing technology. These 
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Fig. 14: Heavy calcium carbonate ceramic core of rotor part by binder jetting: (a) 3D model; (b) green body; 
(c) sintered part [70] 

Fig. 13: Collapsibility of ceramic cores sintered at 1,200 °C 
for 2 h: Sample 1 (C/S=2.45) (a) and Sample 2 

	 (C/S=1.94) (b) at initial moment; Sample 1 
	 (C/S=2.45) (c) and Sample 2 (C/S=1.94) (d) after 

soaked in water for 110 min [67]

(a) (b) (c)

optimizations successfully improved the surface accuracy 
of soluble ceramic cores prepared using direct ink writing 
to Ra=35.39 μm [69]. To combat the problem of moisture 
absorption and deformation during storage and transportation, 
researchers added nano-ZrO2, SiO2, and other materials to 
the CaO/CaCO3 raw materials. Through a series of reactions 
during high-temperature sintering, they not only increased the 
strength of the soluble ceramic cores but also improved their 
resistance to hydration [69]. These advancements promote the 
industrial application of soluble ceramic cores prepared by 
additive manufacturing.

3.2 Preparation of soluble ceramic cores via 
binder jetting

Figure 14 [70] shows the soluble ceramic core parts prepared using 
binder jetting, and their collapsibility is shown in Fig. 15 [70].

Fu et al. and Zhao et al. [68,71,72] adopted the binder jetting 
technology, using nano-TiO2 anhydrous ethanol dispersion and 
nano-ZrO2 anhydrous ethanol dispersion as binders respectively, 
to prepare CaO-based ceramic cores. The study found that 
CaO can react with nano-TiO2 and nano-ZrO2 particles in 
the binder at high temperatures to produce CaTiO3 and 
CaZrO3. The formation of these substances makes the internal 
structure of the cores more dense, significantly increasing 
the flexural strength of the cores. At the same time, CaTiO3 
and CaZrO3 also enhance the cores’ resistance to moisture 
absorption. The microstructures of CaO-ZrO2 ceramic core 
green bodies printed with two different nano-ZrO2 addition 
methods are illustrated in Fig. 16 [68]. In Figs. 16(a) and (b),
the nano-zirconia powder is added in the CaO powder by 
mechanical mixing. In Fig. 16(c), the same amounts (volumes) 
of PVP solution and nano-zirconia suspension are sprayed on 
the powder layer, respectively.

According to Fig. 17 [68], at the microscopic level, it can be more 
clearly observed that with the continuous increase in the content 
of nano-ZrO2, the gaps between the ceramics become smaller, 
and the ceramics become more densely sintered. Nano-ZrO2

reacts with CaO to form CaZrO3, which creates tight sinter 
necks between CaO particles, effectively enhancing the flexural 
strength and moisture resistance of the soluble ceramic cores.

Although the addition of nano-TiO2 and nano-ZrO2 particles 
improves the moisture resistance of the ceramic cores, CaO 
raw materials can absorb moisture during storage, transportation, 

(a) (b)

(c) (d)

Fig. 15: Images showing the collapse effect of the ceramic core of rotors (a-d) [70]

(a) (b) (c) (d)
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and preparation, which can lead to difficulties in printing and 
powder spreading. To address the hygroscopicity issue of CaO, 
Niu et al. [66] used heavy calcium carbonate (HCC) as a raw 
material and prepared ceramic cores via binder jetting technology. 
They treated the green body with a nano-ZrO2 dispersion 
through vacuum impregnation, obtaining ceramic cores with 
high strength and good solubility after high-temperature 
sintering. The dispersion of nano-ZrO2 into HCC through 
vacuum impregnation leads to the generation of CaO/MgO upon 
high-temperature decomposition during sintering. At high 
temperatures, CaO reacts with nano-ZrO2 particles to produce 
CaZrO3, which can form dense sinter necks among the particles, 
resulting in ceramic cores with high strength. Figure 18 [66] 
shows the sintering mechanism diagram of the ceramic cores.

Through microstructural analysis presented in Fig. 19 [66], it 

was observed that after vacuum impregnation with nano-ZrO2

dispersion, the green body of the soluble ceramic core  
underwent sintered densely, resulting in a significant reduction 
in both the number and size of voids. After the vacuum 
impregnation treatment, as shown in Fig. 19(f), finely dispersed 
ZrO2 and CaZrO3 particles at Point A sinter very tightly with the 
larger CaO/MgO particles at Point B, effectively enhancing the 
flexural strength of the ceramic core. Additionally, the outer 
layer of the soluble ceramic core contains a certain amount of 
ZrO2 and CaZrO3, which acts as a barrier to moisture, ensuring 
it has good moisture resistance.

After sintering, the ceramic core contains CaO/MgO, both 
of which can react with water. Therefore, the ceramic cores 
prepared by this method are soluble in water. The collapse of 
the HCC ceramic cores is shown in Fig. 20 [66].

Fig. 16: Schematic diagram of the microstructures of CaO-ZrO2 ceramic core green bodies printed with the 
two nano-ZrO2 addition methods (a-c) [68]

Fig. 17: Microstructures on cross-sections of 3D-printed CaO-based ceramic core green bodies with different precursor 
materials and binders: (a) CaO powder and 5wt.% PVP solution; (b) Cao powder and 3wt.% nano-ZrO2 mixed 
powder and 5wt.% PVP solution; (c) Cao powder and 15wt.% nano-ZrO2 mixed powder and 5wt.% PVP solution; 
(d) CaO powder and 4wt.% nano-ZrO2 suspension; (e) CaO powder and 20wt.% nano-ZrO2 suspension [68]

Fig. 18: Sintering mechanism diagram of ceramic cores after vacuum impregnation with nano-ZrO2 
dispersion [66]

(a) (b) (c)
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Fig. 19: Microscopic morphologies of the sintered ceramic cores without (a, b, c) and with (d, e, f) 
vacuum impregnation [66]

Fig. 20: Collapse of ceramic cores after vacuum impregnation and sintering in hot water for different 
times: (a) 0 min; (b) 2 min; (c) 5 min; (d) 8 min; (e) 10 min; (f) 15 min; (g) 20 min; (h) 30 min [66]

Similar to direct ink writing technology, soluble ceramic 
cores prepared by binder jetting technology also face the issue 
of moisture absorption and deformation during storage and 
transportation. To address this problem, researchers have used 
nano-TiO2 and nano-ZrO2 dispersions as inorganic binders 
or treated the green bodies of CaO/CaCO3 ceramic cores 
with nano-ZrO2 dispersion via vacuum impregnation. These 
approaches have improved the strength of the soluble ceramic 
cores and enhanced their resistance to hydration, promoting 
the industrial application of soluble ceramic cores prepared by 
additive manufacturing.

4 Summary and future perspectives
The additive manufacturing technologies, due to their 
short production cycles and high efficiency, as well as the 
capability to produce complex shapes, have gained widespread 
application in the aerospace industry. The stereolithography 
technology, SLS, direct ink writing, and binder jetting 
technology are among the additive manufacturing technologies 
that provide important opportunities for the manufacturing of 
the soluble ceramic cores. These technologies offer advantages 
such as geometric complexity, customized production, rapid 

(a) (b)

(e) (f)

(c)

(g)

(d)

(h)
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prototyping, and lower production costs.
However, the stereolithography technology faces issues 

such as significant shrinkage and cracking during the sintering 
of the ceramic cores, high cost of photosensitive resins, low 
surface accuracy of the cores, and considerable sintering 
shrinkage. The SLS technology faces similar issues like 
high material and equipment investment costs and difficult 
maintenance. Furthermore, the initial green bodies formed by 
SLS technology have low strength, which is unfavorable for 
subsequent processing. Direct ink writing and binder jetting 
technologies do not require external energy sources like 
lasers or UV light. They can form complex shapes at room 
temperature, and have low equipment and material costs. 
Scholars have successfully prepared soluble ceramic cores 
with certain strength, accuracy, and water resistance using 
stereolithography technology and binder jetting.

The research on preparing the soluble ceramic cores 
via the additive manufacturing is still in its early stages 
and faces many challenges which hindering its industrial 
applications. Firstly, the raw materials used for preparing 
the soluble ceramic cores via the additive manufacturing are 
relatively limited, typically using CaO and CaCO3, where 
CaO is highly hygroscopic and difficult to store, affecting the 
forming quality; CaCO3 decomposes during high-temperature 
sintering, causing over 20% shrinkage, significantly impacting 
the dimensional accuracy of the ceramic cores [66]. Secondly, 
the surface accuracy of the ceramic cores prepared by the 
additive manufacturing is low, and there is insufficient related 
research works. By optimizing the printing layer height, 
binder saturation, and infiltration treatment, the surface 
accuracy of the ceramic cores prepared by the binder jetting 
can reach Ra=5.70-7.38 μm, whereas the direct ink writing 
technology can achieve Ra=35.39 μm with optimal process 
parameters [69,73]. In addition, large-sized ceramic cores often 
develop numerous cracks due to uneven heating during 
sintering, and the soluble ceramic cores with cracks cannot 
be used in normal applications [74]. Therefore, it is necessary 
to systematically study the sintering process of the ceramic 
cores. In summary, further research is needed on the surface 
accuracy and sintering process of the soluble ceramic cores.

The soluble ceramic cores prepared from ceramic powders 
such as Al2O3 and SiO2 using soluble salts as dry-state binders 
can effectively solve the issues of hygroscopicity and shrinkage 
during sintering associated with the CaO/CaCO3 systems. 
These soluble ceramic cores have excellent thermal resistance, 
high strength, and can avoid fracture due to the impact of 
molten metal, offering broad application prospects [75, 76].
However, currently, there is l imited research on the 
preparation of soluble ceramic cores from Al2O3 and SiO2 
systems using additive manufacturing technologies. Further 
exploration is needed to investigate the performance and 
accuracy of these cores. It is hoped that these challenges 
will be resolved in the near future, paving the way for the 
industrial application of soluble ceramic cores prepared 
through additive manufacturing technologies.
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