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1 Introduction
Foundry industries need to produce quality castings 
with a minimum number of rejections to meet the 
market demand, however, casting defects caused by a 
combination of many factors are inevitable due to the 
involvement of the number of process parameters in the 
casting process [1]. To reduce defects in sand casting, 
it is necessary to understand the process parameters 
as well as their effects on the final castings. The trial 
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and error method is usually used in foundries, which 
causes amounts of failure in maintaining a satisfactory 
quality control level [2]. Smart manufacturing that 
integrates highly digitized production facilities, including 
the Internet of Things, Cyber Physics Systems, Big 
Data, Machine Learning, etc., makes the production 
process more intelligent and efficient [3]. Using various 
quality control tools to control process variability can 
effectively solve quality problems in the manufacturing 
industry. Combining casting knowledge and big data 
models to analyze, predict, and improve casting quality 
shows great potential in reducing scrap rate [4]. 

An efficient defect prediction model requires a 
detailed consideration of the production process. It 
is confirmed that some typical defects are related to 
the process parameters in sand casting. In cast iron 
foundries, the causes of cold shut include low pouring 
temperature, low fluidity, very hard mould, and high 
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Fig. 1: Overview of the methodology for the quality prediction model and process optimization

moisture; the shrinkage porosity defect is related to incorrect 
feeding, unsuitable carbon equivalent, and high pouring 
temperature; the sand hole defect is related to the weak mould 
surface, loose sand, and handling of mould after closing friable 
sand; the gas porosity defect is related to incorrect feeding, 
weak mould, and high phosphorus content [1, 5-7]. It is difficult 
to analyze the specific impact on the actual production castings 
due to complex multi-parametric relationships. Data mining is a 
novel strategy to determine the significant process parameters, 
which contains defect data set preparation, data-driven model 
building, and feature importance analysis [8].

Data-driven techniques have been widely used in manufacturing 
industries, such as industrial process monitoring [9], process 
planning [10-12], and decision-making for production systems [13]. 
In research related to the manufacturing industry, the majority 
of data-driven models utilize a supervised learning method to 
construct regression or classification models [14]. Babu et al. [15]

constructed Naive Bayes and Support Vector Machine (SVM) 
classifier models based on a simpler tabular data input 
consisting of morphological and mean gray values of inclusions 
to distinguish the types of nonmetallic inclusions. Boto et al. [16] 
presented three data-driven models based on process data to 
estimate different indicators related to process performance in 
a steel production process and developed a new approach with 
feature selection methods and four state-of-the-art regression 
approximations (random forest, gradient boosting, xgboost 
and neural networks). Zhao et al. [17] took die-casting pressure, 
aluminum liquid components, and 25 other parameters as the 
prediction basis (input) and the geometrical dimensions as the 
goal of quality prediction to train the historical data in the die-
casting smart factory using the BP neural network. Liu et al. [18] 
proposed a machine learning method to realize the real-time 
quality prediction in the die-casting process and the appearance 
defect quality prediction after processing, respectively. Another 
widely used data-driven method is to collect process parameters 
for product defect classification and prediction in the die-casting 

production process [19, 20]. The production data from cast steel 
and iron foundries can be used to create data-driven models 
for predicting casting surface-related defects and the model 
was successfully applied to the prediction of surface defects 
and the understanding of relative parameters [8]. However, this 
study collected data from many types of castings, the correlation 
between defects and process parameters is different for various 
casting models. Therefore, collecting effective data on specific 
castings and defect types are beneficial to construct models 
with high accuracy. Method of combining Monte Carlo (MC) 
models and data-driven models have been proposed to optimize 
process parameters [21, 22], which randomly generated a data 
pool following either a normal or uniform distribution, and 
then the corresponding results are calculated according to the 
mathematical model, so as to select the optimal preset parameter 
distribution.

This study presents an approach for the application of 
machine learning in the prediction and understanding of 
casting related defects. The Steering Bridge casting data were 
collected for the creation of a classification model in a foundry 
for half a year. The model analysis provided valuable insights 
into how process parameters affect defects. Furthermore, the 
application of Monte Carlo simulation was demonstrated 
effectively for defect prediction in different stages of the 
casting process, including the calculation of defect occurrence 
probability.

2 Methods
A novel strategy for a quality prediction model and process 
optimization was constructed, and the brief flow chart for the 
overall methodology is shown in Fig. 1. This framework is 
mainly divided into four parts: data acquisition, pre-processing, 
data classification model construction, quality prediction and 
process optimization. The specific methods for each of these 
four parts are introduced in the following sections.
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Fig. 2: CAD model (a) and steering bridge casting (b) showing the position prone to surface defects in red circle

2.1 Data acquisition
The casting data has been collected in a foundry for half a 
year. The foundry has implemented a casting ERP system 
incorporating a Single-Piece management method to achieve 
the recording of process parameter data and the requirement on 
product single-piece traceability [23]. The steering bridge is an 
important part of the forklift, as shown in Fig. 2(a). The casting 
overall dimensions are 840 mm×224 mm×370 mm, with a 
critical position thickness of 27 mm. The maximum thickness 
of the casting is 60 mm, while the minimum thickness is 
12 mm. The weight of the casting is 51 kg. The metallurgical 
defect is inevitable due to process fluctuations and complex 

casting structures, such as the sand hole shown in Fig. 2(b). 
Considering the importance and accessibility of parameters 
in the manufacturing process of sand mould and casting, 18 
process parameters listed in Table 1 were collected through 
manual records, sensors, and analysis equipment, and the 
corresponding casting quality was detected. According to the 
quality detection results, there are five types of casting defects: 
gas porosity, sand hole, cold shut, shrinkage porosity, and good 
sample. The dataset is constructed containing 6,382 sample 
data collected by the factory, including 400 samples of gas 
porosity, 359 samples of sand hole, 273 samples of cold shut, 
148 samples of shrinkage porosity, and 5,202 good samples.

Table 1: Statistics of sand casting process parameters

Feature Process parameter Max. Min. Mean Std. deviation

1 Pouring temperature (°C) 1,415 1,385.000 1,401.413 6.220

2 C (wt.%) 3.85 3.610 3.761 0.056

3 Si (wt.%) 2.92 2.600 2.710 0.053

4 Mn (wt.%) 0.66 0.380 0.516 0.050

5 P (wt.%) 0.047 0.013 0.027 0.005

6 S (wt.%) 0.018 0.006 0.012 0.002

7 Mg (wt.%) 0.057 0.034 0.045 0.005

8 Al (wt.%) 0.04 0.017 0.025 0.004

9 Pouring weight (kg) 145 128.000 134.929 2.157

10 Pouring time (s) 27.2 11.900 17.293 2.006

11 Inoculation amount (g) 92 24.000 49.562 9.694

12 Moulding sand compactability 
(%) 48.82 35.070 39.816 1.277

13 Moulding sand shear strength 
(kPa) 60 2.000 5.033 5.760

14 Used sand temperature (°C) 48.8 33.400 41.268 2.732

15 Moisture of used sand (%) 2.94 1.380 1.993 0.195

16 Bentonite (%) 58.5 12.500 23.006 1.891

17 Mixed clay (%) 13.9 9.800 11.851 0.620

18 New sand (%) 40 0.000 10.641 12.488



140

CHINA  FOUNDRY Vol. 21 No. 2 March 2024
Research & Development

Fig. 3: Quantile-Quantile plot of features: (a) aluminum content; (b) moulding sand compactability; (c) moulding 
sand shear strength; (d) mixed clay content

(d)(c)

2.2 Pre-processing
Pre-processing involves data cleaning, data verifying, and 
data formatting into a usable dataset, which helps build a 
machine learning model more accurately. According to the 
process parameters given in Table 1, the sample elements are 
18-dimensional feature vectors.

Abnormalities in the collected data include abnormal sensor 
records, manual miss-recording, and missing data. Box-plot 
and normal distribution graphs are commonly used to deal with 
data abnormalities. The elimination of the 3σ rule requires the 
original data distribution to be close to the normal distribution. 

Furthermore, a Quantile-Quantile plot is used to judge whether 
the sample distribution is suitable [24]. The bottom and top points 
of the box plot are the 25th and 75th percentile. The process 
parameters are considered to be an input of feature vectors. The 
abnormal data is concentrated on Feature 8, Feature 12, Feature 13, 
and Feature 17, therefore, the corresponding 36, 52, 12, and 8 
groups of data are reduced respectively. The Quantile-Quantile 
plots of those features are shown in Fig. 3, some sample values 
are deviated from the normal range [Fig. 3(a) and Fig. 3(d)], and 
some samples have obvious loss or error [Fig. 3(b) and Fig. 3(c)]. 
Finally, 6,276 sample data are used for model creation.

(a) (b)

Learning algorithms benefit from the normalization of 
datasets, but the collected data has different ranges, which 
makes it difficult for many machine learning models to reach 
the optimal computational state. Z-score normalization is used 
to scale the data so that it falls into a specific interval, which 
obeys normal distribution with a mean of 0 and a standard 
deviation of 1 [25].

2.3 Classification model
Machine learning methods of Random Forest (RF), K-nearest 
neighbor (KNN), Support Vector Machine (SVM), and Neural 
Networks (NNs) were used to construct classification models. 
As an integrated learning algorithm, the accuracy rate of a 
random forest is higher than that of the decision tree, mainly 
for a large number of table data. Neural network can achieve 
a higher accuracy than that of random forest when the amount 

of data is large enough, but its interpretability is relatively low, 
and it is difficult to configure appropriate hyper-parameters. 
Since the casting defect data belongs to one-dimensional 
tabular data, it is better to choose the random forest algorithm 
for integrated learning.

The construction process of a random forest is shown in 
Fig. 4, which is mainly divided into three key steps. Firstly, 
the training sample set was built based on the bagging 
method, and then feature attributes were selected based on 
the randomness of feature subsets to construct a decision tree, 
finally, a majority voting method was used to make decisions 
on the results of each decision tree.

(1) Building training sample set
To construct the training sample set, assuming that the 

original dataset contains N samples, the elements in the sample 
set are L-dimensional attribute vectors. According to the 
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Fig. 4: Construction of random forest classification model

process parameters given in Table 1, the sample elements are 
18-dimensional feature vectors. The bagging method was used 
for sampling, and after N times of sampling, a new training 
set containing N samples was obtained. Then, this process 
was repeated K times, and the training sample set of K*N 
samples can be obtained. Notably, the process of sampling is 
an independent event, each sample has the same probability of 
being selected at each sampling instance. Therefore, the newly 
constructed sample set may have duplicate samples, and some 
samples may not be selected during every iteration. Initially, 
the weight of each sample was set to the same value to test 
the model, then, the prediction accuracy of the model for each 
sample was obtained by increasing the weight of samples with 
low prediction accuracy and decreasing the weight of samples 
with high prediction accuracy. Finally, an optimal set of 
weights can be obtained to maximize the prediction accuracy 
by continuously selecting the weight of the samples.

(2) Construct the decision tree
The decision tree was constructed for each training 

Fig. 5: Quality prediction in different cases

sample set. When nodes were split in each decision tree, 
some attributes were randomly selected from the 18 feature 
attributes to form an attribute subset for node splitting. The 
purpose of decision tree node splitting is to find the path with 
the maximum drop rate and quickly filter and classify sample 
data. Purity describes the consistency of data categories in a 
node, the greater the purity, the more similar the data filtered 
through the decision path. This indicates that the attributes 
selected for node splitting in the decision tree are appropriate. 
In contrast to purity, impurity describes the inconsistency of 
data categories in a node. The Gini impurity was used as the 
evaluation standard, it can be calculated as:

where D is the sample set, pk is the proportion of samples in 
category k, and y is the total number of categories. Gini Index 
(GI) is the best principle to judge the classification quality in 
the random forest [26], the lower GI value implies the higher 
quality of classification based on the optimal attribute.

(3) Majority voting for the result
After training, each decision tree predicts the classification 

category. As shown in Fig. 4, there are N decision trees with K 
decision results for one sample, and the decision-making results 
are not the same. To obtain the final decision-making result 
of the random forest, the majority voting method was used to 
select the prediction result. The principle of the majority voting 
method is that when a prediction label obtains more than half 
of the decision tree votes, the final prediction is the prediction 
label, otherwise, the prediction label is rejected.

2.4 Quality prediction and process parameters 
optimization 

The application of the quality prediction model is shown in 
Fig. 5, which consists of 3 cases: (1) Determine the prediction 
results of quality classification after all process parameters 
were determined. (2) During the casting process, if some 
parameters were not determined, the pending parameters 
should be assigned random values following the historical 
dataset. (3) Set the undetermined parameters as random values 
from a new distribution, and then changed the distribution 
of input parameters, to select the optimal preset parameter 
distribution.

(1)Gini
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For Case 2 and Case 3, the Monte Carlo simulation method 
was used to calculate the input parameters which selected 
random values from the statistical distribution of undetermined 
parameters and then calculate the classification results using 
the trained random forest model. In the casting process, 
features 1 to 18 are replaced by X1 to X18. Considering the 
pouring temperature and inoculation amount are the final 
parameters, which is mapped to the inputs X1 and X11, the 
classification results can be affected by changing these two 
values, especially when them are of high GI value. In case 2, 
directly setting pending parameters as random values following 
the historical dataset ensures they obey the real distribution.

The optimization process is to determine the optimal 
distribution according to the results of statistical analysis. 
Table 1 shows the temperature difference of pouring 
temperatures is 30 K, assuming a normal distribution (μ, σ2), 
in which the variance σ2 is set to a fixed value of 5 and μ varies 
from the minimum to the maximum. It should be noted that 
as a reference for this case, the actual variance is difficult to 
obtain. Then, the optimal distribution is selected according to 
the predicted result.

3 Results and discussion
3.1 Classification result
When training the classification model, 5-fold cross-validation 
was used, and the classification performance was preliminarily 
evaluated with two evaluation indexes: (1) Accuracy: Measure 
the percentage of all samples that are correctly classified; 
(2) F1 score: Harmonic mean of precision rate and recall rate. 
The recall and precision of defective castings are the main 
performance indicators in the industry [27]. Recall refers to the 
ratio between the amount of relevant information detected 
from the database and the total amount. Precision is the ratio of 
the number of relevant samples in the recognition or retrieval 
results to the total number of samples in the results, which can 
be expressed as:

the confusion matrix. Figure 6 shows the confusion matrix of 
random forest multi-classification results. Categories 0, 1, 2, 3, 
and 4 correspond to good, gas porosity, sand hole, cold shut, 
and shrinkage porosity samples, respectively.

Figure 7(a) shows the recall of the defect is more than 
90%, indicating that more than 90% of the defects have been 
correctly detected. Most samples with the wrong classification 
of defects are considered to be zero defects. This indicates 
that there are fewer cases where multiple defects occur 
simultaneously on the same casting. According to the data 
analysis, there is a certain error between category 1 (gas 
porosity) and category 3 (cold shut), which indicates that the 
process parameters of porosity and cold shut are more similar 
than other defects. The accuracy shown in Fig. 7(b) is lower 
than the recall rate. The training process has a great impact on 
the result. When the cost of misclassifying defect samples as 
good samples is preset to be higher, the recall rate is increased 
and the accuracy rate is reduced. On the contrary, if this error 
cost is set lower, the recall rate decreases and the accuracy rate 
increases. In this study, the recall rate is considered a more 
important indicator, the cost function is set reasonably.

3.2 Feature importance
To determine the impact of each specific process parameter on 
specific defects, the GI value of the classification models of the 
four types of defects are calculated, and the results are shown 
in Fig. 8. The influence of inoculation amount and pouring 
temperature (11, 1) on gas porosity is more important, because 
that high pouring temperature and excess inoculation amount 
are easy to cause porosity defects. This is consistent with the 

TPR= TP/(TP+FN) (2)

PPV = TP/(TP+FP) (3)

Table 2: Performance comparison of classification models

Process parameter Accuracy F1 score Recall
 (%)

Precision 
(%)

RF 97.1 92.37 94.08 90.72

KNN 95.8 90.25 92.52 88.08

SVM 92.3 77.51 74.4 80.90

NNs 94.3 86.84 91.44 82.68

Fig. 6: The confusion matrix of random forest 
multi-classification results

where TPR is the recall, and PPV is the accuracy. False 
positive (FP) is the number of negative samples incorrectly 
predicted as positive samples. False negative (FN) is the 
number of positive samples incorrectly predicted as negative 
samples. True positive (TP) is the number of positive samples  
correctly predicted.

Table 2 shows the classification performance of selected 
models. In the RF model, the average recall for classification is 
94.08 and the average precision is 90.72, indicating this model 
has great classification performance. Compared with three 
other common classification algorithms, the RF model is the 
best.

The accuracy of this model is 97.1%, but the model with 
high accuracy may not have a good classification effect, it 
is necessary to calculate and analyze the observed values of 
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Fig. 7: Results of classification: (a) TPR (recall) of the confusion matrix; (b) PPV (accuracy) of the confusion matrix

features importance analysis results. It is recommended to 
adjust inoculation amount and reduce temperature wherever 
possible. For sand hole defects, the important features are 
new sand contents, used sand temperature, moulding sand 
compactability, and pouring time (18, 14, 12, 10) in sequence. 
For cold shut defect, the important features are carbon content, 
pouring temperature, pouring time, silicon content, and 
inoculation amount (2, 1, 10, 3, 11) in sequence. There are 
many factors with similar contributions that influence cold 
shut. This indicates that the process parameters collected in 
this study cannot be well distinguished from cold shut defects. 
For shrinkage porosity defects, the most important feature 

is magnesium content. In order to obtain a better nodulizing 
quality, the residual Mg content is generally higher than 
0.03%, but it increases the shrinkage tendency of casting. 
Taking into account the difficulty of process control, it is 
generally controlled at 0.035%-0.04% in actual production for 
spheroidal graphite cast iron [28].

As for the result of data mining, the unexpected results 
are more worth considering for the foundries instead of the 
reasonable ones. In addition, the possible process of defect 
occurrence can be inferred through feature importance analysis 
to improve detection efficiency.

Fig. 8: Feature importance of each defect in classification model: (a) gas porosity; (b) sand hole; (c) cold shut; 
(d) shrinkage porosity

(a)

(c)

(b)

(d)

(a) (b)
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3.3 Quality prediction
The product quality prediction model can effectively control 
product quality with real-time data interaction. According to 
the above method, the predicted process of Cases 1-3 was 
discussed in detail with examples. 

(1) Completion of the casting process
The random forest classifier trained above was used for 

classification. The input was the vector of features 1-18, and 
the output result was the predicted classification category. 
The score of each category for the corresponding output was 
also calculated, which was obtained by voting from the post-
verification probability of each weak classifier. Table 3 shows 
the classification scores of some samples. The category with 
the highest score is the predicted output, and the higher the 
score, the higher the reliability. When the scores are close, there 
is a high likelihood of misjudgment in the classification result.

(2) Process in progress
In the casting process, the pouring temperature and 

inoculation amount are the final process parameters, which are 
set as random values following the distribution of the historical 
dataset, to form a complete input feature vector. The 6,276 
samples with the same number of samples as the dataset are 

constructed, as shown in Table 4, where 16 features of them 
are fixed values.

Statistically averaging the predicted output class scores for 
each sample, the probability of predicting each type of defect 
is 0.9267 (good), 0.0487 (gas porosity), 0.0019 (sand hole), 
0.0201 (cold shut), and 0.0025 (shrinkage porosity). The result 
shows there is a 92.67% probability to obtain good products by 
selecting random values in Feature 1 and Feature 11, indicating 
that the previous 16 process parameters are acceptable. Next, 
fixed the inoculation amount value with a larger value of 70, 
the probability of predicting each type of defect is 0.1003 
(good), 0.8479 (gas porosity), 0.0399  (sand hole), 0.0104 (cold 
shut), and 0.0016 (shrinkage porosity). Obviously, the Feature 11 
greatly affects the result of gas porosity and the value of 70 is 
inappropriate. The same conclusion can also be obtained from 
feature importance analysis. This predictive method can make 
real-time decisions for the product production process and 
reduce the scrap rate.

(3) Process parameter optimization
The optimization goal is to obtain the appropriate pouring 

temperature when all other parameters are determined. The 
input feature vector is shown in Table 4, and the inoculation 

Table 3: Some samples output scores of prediction category

Sample Good Gas porosity Sand hole Cold shut Shrinkage porosity

1 0 0.9500 0 0.0167 0.0333

2 0 0 0 1 0

3 0 0.0333 0 0.9667 0

4 0 0.0033 0 0.9667 0

5 0.0333 0.0367 0 0.9300 0

6 0 0.0367 0 0.9633 0

7 0 0.7033 0 0.2967 0

8 0 0.8685 0 0.1315 0

9 0 0.6843 0 0.3157 0

10 0 0.1643 0 0.8357 0

Table 4: Values of input parameter

Feature Process parameter Value Feature Process parameter Value

1 Pouring temperature (°C) Random 10 Pouring time (s) 15.9

2 C (wt.%) 3.7 11 Inoculation amount (g) Random

3 Si (wt.%) 2.73 12 Mould sand compactability (%) 41.51

4 Mn (wt.%) 0.52 13 Mould Sand shear strength (kPa) 5.56

5 P (wt.%) 0.014 14 Used sand temperature (°C) 40.2

6 S (wt.%) 0.007 15 Moisture of used sand (%) 1.92

7 Mg (wt.%) 0.035 16 Bentonite (%) 24.1

8 Al (wt.%) 0.026 17 Mixed clay (%) 11.7

9 Pouring weight (kg) 132 18 New sand (%) 20
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Fig. 10: Quality prediction and decision-making system

Fig. 9: Curve of the probability of various defects with 
the temperature range

data management personnel. The results show that the scrap 
rate has dropped from 10.16% to 6.68%.

amount value is set to a larger value of 70. The pouring 
temperature was preset as 30 normal distributions, and the 
Monte Carlo simulation method was used to simulate 50,000 
times within each temperature distribution interval to calculate 
the defect probability for each temperature segment. The curve 
of the probability of various defects within the temperature 
range is plotted in Fig. 9. It can be seen that the gas porosity 
defect rate has a maximum value at 1,403 °C. However, at low 
temperatures, cold shut defects are prone to occur. Considering 
the defect rate comprehensively, a higher pouring temperature 
is recommended in this case.

The above functionality can be integrated into a quality 
prediction and decision-making system, as shown in Fig. 10, 
which can perform real-time quality classification of ongoing 
casting processes. This application software is deployed on 
PCs on the site, providing computational services to quality 

4 Conclusion
This study collected the data on relevant process parameters 
in the sand casting process and established a data-driven 
casting defect classification model. The recall rate of all the 
defects is more than 90%. In this model, the influence of 
process parameters on gas porosity and cold shut defect is 
similar according to classification error result. Based on the 
classification model, the importance of defect-influencing 
factors was analyzed. The influence of pouring temperature 
and inoculation amount on gas porosity is more important, 
high pouring temperature and excess inoculation amount are 
easy to cause gas porosity defects. For sand hole defects, 
the important parameters are new sand contents, used sand 
temperature, moulding sand compactability, and pouring time 

in sequence. For shrinkage porosity defect, the most important 
feature is magnesium content.

Quality prediction model applied in three situations was 
implemented. In the first case, defects are predicted when all 
processes were completed, and the score of each category 
for the corresponding output was also calculated. In the 
second case, the prediction method can determine whether the 
preset parameters are appropriate in the process. Finally, the 
classification model is used as the mathematical model of Monte 
Carlo simulation to determine the optimal process parameters.
In this case, the gas porosity defect rate has a maximum value 
at 1,403 °C and a higher pouring temperature is recommended. 
This data-driven method for quality prediction and process 
optimization shows great potential in reducing scrap rates.
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