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1 Introduction
Due to the elimination of transverse grain boundaries 
(GBs) and the alignment of GBs parallel to the main 
stress axis, directionally solidified (DS) blades and 
vanes made from Ni-based superalloys exhibit excellent 
mechanical properties at elevated temperatures. These 
components are widely used in advanced aircraft 
engines and heavy industrial gas turbines (IGTs) [1, 2]. 
Surface recrystallization (RX) is a critical defect in these 
components, causing by the residual strain. During the 
heat treatment processes, the residual strain serving as 
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the impetus for the initiation and progression of RX 
under the promotion of high temperature [3]. 

As the advanced directional alloys have been 
developed and blade and vane designs have become 
increasingly complex, surface RX has emerged as a 
major defect contributing to high scrap rates of DS 
components. Researchers generally believe that surface 
RX can diminish the high-temperature performance of 
these parts. Nonetheless, research works on the effects 
of surface RX on the high-temperature mechanical 
properties of DS blades and vanes are surprisingly 
limited in the open references. Most studies have 
focused on the behavior of surface RX in directionally 
solidified single-crystal (SC) superalloys [4-16], as well 
as its impact on the room temperature mechanical 
properties of SC superalloys [17-23], with little research 
addressing its influence on the high-temperature 
mechanical properties of DS blades and vanes [24, 25].
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Fig. 1: Preparation of specimens used in high-temperature tensile testing 

In this study, DS DZ409 superalloy samples underwent 
sandblasting for varying durations and subsequent heat 
treatment to induce different depths of surface RX. The 
influence of surface RX on high-temperature tensile properties 
at various temperatures was systematically investigated. 
Additionally, combined with simulation analysis, the fracture 
modes of the DS superalloy with and without RX at different 
temperatures were analyzed, revealing the failure mechanisms 
in the RX DS superalloys. 

2 Experimental procedures
DZ409 superalloy with the nominal composition of 12.2 Cr, 
0.13 C, 1.4 Mo, 3.93 W, 4.0 Al, 4.06 Ti, 4.5 Ta, 0.088 B, 0.021 Zr,
8.57 Co, 0.48 Hf, and balance Ni, in wt.%, was used as raw 
material in the present study. As-cast DS hollow dummy 

blades, as shown in Fig. 1, were solidified using a Bridgeman 
furnace. The directional solidification processes are as follows: 
Firstly, melting the alloy in a crucible which was positioned 
in the induction melting coil. Then, fixed the investment mold 
cluster onto the chill plate and raised it into the mold-heater. 
A vacuum of 1×10-3 Pa would be achieved in the furnace 
chamber before preheating the mold. After equalizing the mold 
temperature of 1,480 °C, the melted alloy with the temperature 
of 1,490 °C was poured into the mold, and finally the DS 
hollow dummy blades were obtained under a withdrawal rate 
of 6 mm·min-1. Then, the specimens for high-temperature 
tensile testing were cut off from these blades. The specimens 
contain two columnar grains which have 15±2° and 25±2° 
misorientation to [001] crystallization orientation tested by 
Laue method. Their grain boundary (GB) is parallel to the 
gravity direction (i.e., the tensile direction of in tensile testing).

To induce varying fractions of RX, the gauge lengths of the 
specimens were subjected to sandblasting using Al2O3 sand 
with a particle size of 60 mesh for 0 s, 15 s, 30 s, and 45 s.
The specimens were then subjected to solution treatment 
(1,180 °C/2 h+1,230 °C/3 h, AC) and aging treatment 
[(1,080 °C/4 h, AC)+(845 °C/24 h, AC)] in a vacuum furnace. 
Subsequently, the specimens before tensile testing were 
transversely cut at the gauge position, and the microstructure 
was observed using optical microscopy after etching with an 
etchant composed of 60 mL C2H5OH, 40 mL HCl, and 2 g 
CuCl2·2H2O. The fraction of surface RX, defined as the ratio 
of the surface RX area to the cross-sectional area at the gauge 
position of the specimens, was calculated using Image-Pro Plus 
software. Three measurements were conducted for each surface 
RX specimen that underwent various sandblasting durations, 
which were then used in tensile testing at 650 °C and 950 °C, 
with a stress loading rate maintained at 0.001 s-1. The fracture 
surfaces were examined using scanning electron microscopy 
(SEM, Zeiss Sigma300, Carl Zeiss AG, Oberkochen, Germany). 

3 Simulation
To understand the fracture mechanism of the recrystallized 
specimens, fracture behavior was simulated using ABAQUS 
software (Abaqus/CAE 2023, Dassault Systèmes, France). 
To accurately model the material’s mechanical behavior 
and thermal effects, it is crucial to describe the equilibrium 
state under external forces, which is done using the static 
equilibrium equation:

                                               (1)
where σ is the stress tensor, and f is the body force density. 

The material’s deformation behavior is described by 
constitutive relations. For elastic deformation, the stress-strain 
relationship follows Hooke’s Law:

C                                          (2)
where σ is the stress tensor,  is the strain tensor, and C 
is the stiffness matrix, which depends on the material’s 
Young’s modulus E and Poisson’s ratio v [7]. In cases of large 
deformation, plastic deformation may occur, and the yield 
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Fig. 2: Physical parameters used in ABAQUS simulation 

criterion is typically followed the Von Mises criterion:

(3)

where σeq is the equivalent stress, representing the yield behavior of the material [26]. 
Thermal effects on the material’s deformation are significant at high 

temperatures. Thermal expansion strain (σthermal) is given by:
                                                 (4)

where α is the material’s coefficient of thermal expansion, and ΔT is the 
temperature change. The change of temperature significantly impacts the strain 
of material, as well as its elastic modulus and yield strength, thereby altering the 
material’s mechanical properties [27].

To simulate the fracture mechanism of the superalloy, a 10×5 rectangular 
domain was established. The distribution of surface recrystallization was modeled 
based on Voronoi cells and the actual observed morphologies of RX layers, 

with grain boundaries of 0.03 mm wide 
established on the grain boundaries, 
dividing the entire rectangle into a layer 
of recrystallized grains and a large grain. 
After assigning material parameters, a 
fixed boundary condition was applied 
to the left edge, and a displacement was 
applied to the right edge to induce fracture 
in the model. Temperature conditions 
(650 °C/950 °C) were set, and the mesh 
was discretized into triangular elements 
with a side length of 0.1 mm. The physical 
parameters used in the simulation were 
calculated using Thermal-Calc software, 
as shown in Fig. 2.

4 Resutls and discussion
4.1 Morpholgies of surface RX layers before tensile test
Figure 3 illustrates the morphologies of surface RX layers in the cross-sections of 
specimens underwent sandblasting for varying durations. After 15 s of sandblasting, 
a thin, discontinuous RX layer composed of fine grains forms, with an average 
thickness of approximately 17 µm, where the GBs are chaotically arranged. As the 
sandblasting duration increases to 30 s, the layer gradually becomes thicker and 
more continuous; most grains grow larger, and their boundaries align more vertically 
to the matrix. After 45 s, the layer becomes nearly continuous, and the grains grow 
significantly larger, with an average thickness of about 56 µm, and the GBs are 
predominantly vertical to the matrix. The fractions of surface RX were measured and 
calculated to be 4.9%, 6.2%, and 8.2% for the specimens with a sandblasting duration 
of 15 s, 30 s, and 45 s, respectively. Additionally, a small number of micropores are 
observed in the DS matrix, and these micropores can accelerate the propagation 
rate of cracks that originate from the RX layer within the matrix and reduce the 
mechanical properties of the DS superalloy.

4.2 Influence of surface RX on 
high-temperature tensile 
properties at 650 °C and 
950 °C

Figure 4 shows the stress-strain curves 
of specimens with different surface RX 
fractions, along with their yield strength 
(σ0.2) [Fig. 4(a)] and elongation [Fig. 4(b)] 
at 650 °C. It is evident that an increase in 
surface RX significantly reduces both yield 
strength and elongation. As the RX fraction 
increases, the yield strength decreases almost 
linearly from approximately 1,171 MPa to 
about 988 MPa. A notable reduction in 
elongation is also observed, decreasing 
from approximately 3.6% to about 0.9% 
when the RX fraction increases from 0% 
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Fig. 3: Morphologies of surface RX layer sandblasted for varying durations: (a) 15 s; (b) 30 s; and (c) 45 s

Fig. 4:  Influence of RX on high-temperature tensile properties of specimens at 650 °C: (a) stress-strain 
curves; (b) variation in yield strength and elongation with RX fraction

to 4.9%. Beyond this point, further increases in the RX fraction 
result in insignificant changes in elongation, indicating that 
elongation becomes less sensitive to RX fraction increasement 
beyond this point.

Figure 5 shows the fracture morphologies of specimens with 
different surface RX fractions at 650 °C. When the RX fraction 
is 0%, the fracture exhibits features of cleavage steps and river 
patterns [Figs. 5(a2, a3)], indicating that the fracture mode 
is transgranular cleavage fracture. For the RX specimens, 
the internal regions of the fracture display the transgranular 
cleavage fracture mode with characteristics of cleavage steps 
and river patterns [Figs. 5(b2, c2, and d2)]. However, in the 
outer edge areas of these specimens, specifically in the RX 
regions, the fracture presents a sugar-like pattern with varying 
degrees of polyhedral grain shapes. This suggests that the 
fracture mode in these regions is intergranular fracture, as 
indicated in Figs. 5(b3, c3, and d3). The observed fracture 
morphologies generally align with the elongation results of the 
specimens at 650 °C.

Figure 6 illustrates the stress-strain curves of specimens 
with different surface RX fractions at 950 °C, along with their 
yield strength (σ0.2) and elongation. Similar to the results at 
650 °C, an increase in surface RX significantly reduces both 
yield strength and elongation. A significant reduction in yield 
strength from approximately 625 MPa to about 565 MPa, as 
well as a decrease in elongation from approximately 6.3% to 
about 2.8%, is observed when the RX fraction increases from 
0% to 4.9%. Beyond this point, further increases in RX fraction 
lead to insignificant changes in yield strength and elongation, 
suggesting that neither yield strength nor elongation is 
significantly affected by RX fraction increasement beyond this 
point.

Figure 7 shows the fracture morphologies of specimens 
with different surface RX fractions at 950 °C. When the RX 
fraction is 0%, the fracture exhibits dimples [Figs. 7(a2, a3)], 
indicating that the fracture mode is ductile fracture. For the 
specimens with a RX fraction of 4.9%, 6.2%, and 8.2%, 
the internal regions of the fracture also show dimples 
[Figs. 7(b2, c2, and d2)]. In comparison to 650 °C, a brittle-
to-ductile transition occurs in the specimens at 950 °C. In the 
RX regions, the fracture presents characteristics of layered and 
intergranular dimple fracture, as indicated in Figs. 7(b3, c3, 
and d3).

The present study indicates that the formation of RX 
significantly reduces the intermediate- and high-temperature 
tensile properties of DS superalloys. This reduction can be 
attributed to crack initiation and propagation caused by the 
RX during tensile testing. When surface RX occurs, numerous 
transverse GBs, which are normal to the applied stress, are 
introduced into the DS superalloy. These GBs become the 
weakest regions at intermediate and high temperatures. Due 
to the lower strength of the RX layer and the inhomogeneous 
deformation between this layer and the DS matrix, cracks 
can readily initiate at the GBs in the early stages of tensile 
testing. Subsequently, these cracks propagate along the 
grain boundaries into the DS matrix, as illustrated in Fig. 8, 
leading to the failure of the DS specimens. Consequently, the 
tensile properties of the RX specimens are lower compared 
to those of RX-free DS specimens. As the testing temperature 
increases to 950 °C, the strength of the transverse GBs further 
diminishes compared to that at 650 °C. This results in more 
rapid crack initiation and propagation in these GBs, as shown 
in Fig. 8(b). Therefore, the yield strengths of the specimens are 
significantly reduced at higher temperatures.
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Fig. 5: Fracture morphologies of specimens with different surface RX fractions at 650 °C: (a1-a3) 0%; (b1-b3) 4.9%; 
(c1-c3) 6.2%; and (d1-d3) 8.2%

Fig. 6: Influence of RX on high-temperature tensile properties of specimens at 950 °C: (a) stress-strain curves; 
(b) variation in yield strength and elongation with RX fraction
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Fig. 7: Fracture morphologies of specimens with different surface RX fractions at 950 °C: (a1-a3) 0%; (b1-b3) 4.9%; 
(c1-c3) 6.2%; and (d1-d3) 8.2%

Fig. 8: Longitudinal micrographs of recrystallization specimens (RX fraction: 8.2%) near to fracture 
surface after tensile testing at different temperatures: (a) 650 °C; and (b) 950 °C
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Fig. 9: 2D Voronoi models and simulated crack formation during tensile testing at 650 °C: (a, c) 4.9%; 
and (b, d) 8.2% RX fraction specimens

5 Conclusions
In this study, the influence of surface recrystallization (RX) 
on the high-temperature tensile properties of directionally 
solidified (DS) Ni-based superalloy was investigated. The 
following conclusions can be drawn:

(1) At 650 °C, as the RX fraction increases, the yield 
strength decreases almost linearly. A significant reduction in 
elongation is observed when the RX fraction increases from 
0% to 4.9%. However, beyond this point, further increases 
in the RX fraction result in minimal changes in elongation. 
At 950 °C, a reduction in both yield strength and elongation 
occurs when the RX fraction increases from 0% to 4.9%. 
Beyond this point, further increases in RX fraction lead to 
negligible changes in both yield strength and elongation.

(2) At 650 °C, when the RX fraction is 0%, the fracture 
exhibits a transgranular cleavage fracture mode. For RX 
specimens, the internal regions of the fracture maintain this 
transgranular cleavage mode, but in the RX regions, the fracture 
transitions to an intergranular fracture mode. At 950 °C, when 
the RX fraction is 0%, the fracture shows ductile fracture 
characteristics. For RX specimens, the internal regions of the 
fracture also display ductile fracture, while the RX regions 
exhibit intergranular dimple fracture.

(3) When surface RX occurs, a significant number of 

transverse grain boundaries (GBs), oriented normal to the 
applied stress, are introduced into the DS superalloy. These 
GBs become the weakest regions at intermediate and high 
temperatures. During the early stages of tensile testing, cracks 
can easily initiate at these GBs. Subsequently, these cracks 
propagate along the GBs into the DS matrix, ultimately leading 
to the failure of the DS superalloy.
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