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1 Introduction
Since the 1990s, there has been a vigorous development 
of computer technology, high-energy beam technology, 
CAD/CAM, and mechanical engineering, which has 
led to the rapid advancement of additive manufacturing 
technology. Consequently, additive manufacturing has 
gradually emerged as the foremost advanced production 
technology within the realm of material forming [1].
Additive manufacturing, as a precision forming 
technique, is fundamentally rooted in computer-aided 
model design and relies on high-energy beams as heat 
sources to metallurgically liquefy metal powder or 
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wire, thereby incrementally constructing workpieces 
layer by layer [2-4]. The unique attribute of depositing 
workpieces layer by layer underpins the distinctive 
competitive advantages of additive manufacturing 
t echno logy when compared to conven t iona l 
manufacturing processes:

(1) Exemplary dimensional accuracy and surface 
finish: Workpieces produced through additive 
manufacturing exhibit exceptional dimensional accuracy 
and superior surface roughness, typically in the range of 
Ra 10-30 μm.

(2) Realization of highly precise complex geometries: 
The technology facilitates the realization of high-
precision printing and formation of intricate designs, 
encompassing complex thin-walled structures, structural 
sandwiches, and even shell cavities, resulting in an 
outcome that closely approximates a "near net shape". 
Prominent entities such as General Motors in the United 
States and Siemens in Germany have employed additive 
manufacturing to produce commercialized complex 
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metal components in the aerospace sector [5, 6].
(3) Functional enhancement: Additive manufacturing can 

bestow novel functional attributes upon printed workpiece 
materials, thereby enabling the integration of material 
function and structure. Examples include the generation of 
new dislocation networks to modulate material mechanical 
properties [7] and the fabrication of intelligent structures with 
controllable deformation and degeneration based on the 
distinctive properties of memory alloy materials [8, 9].

(4) Flexibility and cost efficiency: The inherent characteristics 
of additive manufacturing, coupled with its high flexibility, 
render it particularly suited for small and medium-sized batch 
production. This capability minimizes the requirement for 
numerous modules and molds, resulting in significant savings in 
both financial resources and time.

(5) Optimized mechanical properties: Additive manufacturing 
improves workpiece mechanical properties through fine grain 
strengthening, solid solution strengthening, and reduced phase 
segregation via the synergistic utilization of technological 
characteristics, such as a small melt pool, high cooling rate, 
and high energy density within the high-energy beam forming 
process [10].

However, additive manufacturing technology encounters 
several challenges that hinder its progress. In comparison to 
traditional casting and forging methods, additive manufacturing 
efficiency decreases notably with larger processing volumes. 
Despite the rapid growth of the additive manufacturing industry, 
significant advancements have been made in aerospace, medical 
biology, and other scientific fields [11]. Theoretical understanding 
and research of additive manufacturing mechanisms based on 
basic disciplines is still in its early stages. Key areas like forming 
reason of keyholes and splatter, and spheroidisation mechanism 
still need further research [12-14]. Theoretical advancements lag 
current manufacturing processes, with numerous intricate factors 
affecting print quality of additive manufacturing [15]. Issues 
like Marangoni convection in the molten pool, thermodynamic 
effects of laser/electron beams on the molten pool, increased 
porosity due to inadequate fusion [16], and microstructural 
anisotropy due to the printing path direction have increased the 
complexity. These multidisciplinary highly coupled processes 
pose a challenge to comprehensively understanding additive 
manufacturing using single-disciplinary knowledge. Therefore, 
gaining a profound understanding of the intricate interplay 
between powder metallurgy parameters, printing processes, 
and the microstructure and mechanical properties of additive 
manufacturing workpieces is crucial for the further advancement 
of the technology.

In recent years, the rapid development of electronic 
information technology and the increasing prominence of 
artificial intelligence in industrial scientific research have 
been remarkable. Machine learning, as the core technology 
of artificial intelligence, has garnered significant attention, 
particularly in the context of coupled models with multiple 
parameters and complex fields [17, 18]. Machine learning obviates 
the need to construct and solve underlying physical models; it 

simply requires the design of appropriate algorithms to discern 
connections between components, structure, and desired 
performance. Consequently, machine learning has found 
extensive application in the realm of additive manufacturing [16, 19].
This article systematically analyzes and discusses the research 
progress of machine learning in material development, process 
window optimization, and quality inspection within the 
additive manufacturing process.

2 Synopsis of machine learning
Machine learning constitutes a pivotal domain within artificial 
intelligence, encompassing disciplines such as computer 
science, probability theory, and statistics. Its fundamental 
objective lies in empowering computers with the ability to 
learn and reason autonomously, without the need for explicit 
programming. This intrinsic "self-learning" capacity has 
facilitated the extensive application of machine learning in 
diverse domains, including machine vision, speech recognition, 
data mining, and statistical science [19-21]. In contrast to the 
conventional approach of materials research and development, 
rely on experimental measurements and simulation calculations, 
the integration of machine learning with materials research 
methodologies offers a more efficient means of understanding 
the complex composition-process-structure-performance 
relationships, particularly when dealing with vast and intricate 
datasets [22-24]. Consequently, machine learning has attracted 
substantial attention within the areas of new material 
development and additive manufacturing.

As illustrated in Fig. 1, machine learning is categorized into 
supervised learning, unsupervised learning, semi-supervised 
learning, and reinforcement learning, each employing distinct 
learning methods [4]. Supervised learning utilizes labeled data 
points to train algorithms, with each data point having a specific 
label assigned to it. The algorithm establishes a relationship 
between input features and labeled output, enabling it to 
make decisions and produce predicted outcomes. In contrast, 
unsupervised learning algorithms do not rely on human experts 
for data classification and labeling. Instead, these algorithms 
autonomously extract input data features and develop 

Fig. 1: Machine learning methods generally used in 
additive manufacturing [19]
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classification rules. Consequently, unsupervised models are 
often employed to unveil latent patterns or previously unknown 
relationships within data. Semi-supervised learning combines 
elements of both supervised and unsupervised learning. It can 
accurately and efficiently process large datasets, effectively 
utilizing the advantages of both approaches. In reinforcement 
learning, constant interaction with the environment is necessary, 
where positive behaviors are rewarded, and negative behaviors 
are penalized. This approach primarily addresses challenges 
related to optimal design solutions within exceedingly vast 
combination spaces [24-26].

The additive manufacturing process is an extremely complex 
physical phenomenon, tightly intertwined with multidimensional 
and multi-physics fields. Various process parameters have 
great influence on the quality of printed workpieces. Machine 
learning algorithms serve as indispensable "black box" tools 
capable of unraveling complex interconnections among 
components, processes, structures, and properties, all without 
necessitating an in-depth understanding of materials science 
or mechanical principles. Consequently, the integration of 
machine learning into additive manufacturing technology 
holds immense potential for future advancements. Currently, 
supervised learning methods are the main approach in additive 
manufacturing processes. Supervised learning includes various 
classifications designed for different needs, such as regression 
and classification. Regression tasks involve predicting a specific 
value within a large numerical space, while classification tasks 
involve predicting a specific data point within a given numerical 
space, such as 0 and 1. In the process of optimizing the additive 
manufacturing process, it is necessary to establish a relationship 
between high-dimensional datasets and target parameters. At 
the same time, regression models can precisely utilize labeled 
datasets to predict certain specific parameters, and regression 
supports additive manufacturing research by optimizing facets 
like process window configurations [20], alloy composition 
design, and geometric shape deviations [27, 28]. In addition, 
various machine learning techniques find extensive applications 
in additive manufacturing research. For instance, unsupervised 
learning is prevalent in sensor signal feature extraction and 
defect pattern classification [29], while genetic algorithms 
enhance supervised learning's accuracy and generalization 
capabilities [20].

At present, theoretical exploration of additive manufacturing 
processes lags behind advancements in process technology. The 
complex interplay of different printing parameters and their 
influence on printing results requires further interdisciplinary 
research. Machine learning, therefore, emerges as a pivotal tool 
in establishing meaningful connections between the printing 
process and its outcomes during additive manufacturing. This 
article elucidates the application of machine learning in material 
composition design, process window optimization, additive 
manufacturing process detection, and defect performance 
prediction [19, 30-32]. Finally, it contemplates the future trajectory 
and challenges in additive manufacturing grounded in machine 
learning methodologies.

3 Application of machine learning 
in additive manufacturing

3.1 Machine learning guides material design
3.1.1 Alloy composition design

Traditional methods of alloy composition design demand 
extensive materials knowledge and rely on vast experimental 
datasets [33-35]. However, these methods face intricate challenges 
due to the diverse and complex requirements of alloy 
applications, leading to substantial experimental efforts and 
costs. Machine learning, on the other side, excels in handling 
intricate nonlinear model relationships, rendering it a subject 
of growing interest in additive manufacturing alloy design. For 
instance, Xiong et al. [36] developed a back propagation (BP) 
neural network model utilizing alloy composition as input 
and alloy mechanical properties, structural stability, and heat 
treatment temperature window as output. This BP neural 
network model underwent initial screening training involving 
57,560 component composition spaces. This preliminary 
analysis proved invaluable in selecting suitable new nickel-
based superalloys. Mahfouf et al. [33] introduced a fusion of 
genetic algorithms' optimization traits with neural network 
models to facilitate alloy component design in the additive 
manufacturing process. Similarly, Yu et al. [37] applied machine 
learning methods to aid in the development and design of new, 
low crack sensitivity nickel-based superalloys. In their approach, 
various crack sensitivity evaluation standards were compared, 
eventually leading to the selection of freezing range (FR) and 
strain-aging cracking (SAC) index as criteria for the optimization 
algorithm. Utilizing the genetic algorithm as the optimization 
tool, a Pareto front connecting the hot crack and strain aging 
crack criteria was constructed, enabling the identification of 
novel nickel compositions with optimal crack resistance and 
favorable microstructural characteristics, as depicted in Fig. 2. 
Furthermore, experimental comparison with existing nickel-based 
alloys [Fig. 3] revealed that the newly designed alloy performs 
better than existing counterparts in terms of high-temperature 
performance, creep resistance, and oxidation resistance.

Fig. 2: Freezing range criterion versus strain-age crack 
criterion of desirable solutions (the color of the dots 
shows the volume fraction level of all solutions) [37]
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Fig. 4: Workflow for crack susceptibility prediction of 
Ni-based superalloy [38]

Fig. 3: Comparison of mechanical properties between newly designed alloys and existing alloys [37]: (a) FR and 
SAC factors for newly designed alloys in this work for existing printable Ni superalloys and existing Ni 
single-crystal commercials; (b) calculated γ' solvus temperature and calculated creep merit index for 
existing printable Ni superalloys and existing Ni single-crystal commercials; (c) oxidation diagram for 
newly designed alloys in this work for existing printable Ni superalloys and existing Ni single-crystal 
commercials; (d) heatmaps of correlations between average crack length and the corresponding 
criteria, where ACL is the abbreviation of average crack length

In the context of alloy design for additive manufacturing, 
machine learning not only serves as an optimization solution, 
but also demonstrates significant generalization capabilities, 
enabling the establishment of prediction models for alloy 
composition and properties. Mu et al. [38] developed a crack 
sensitivity prediction model for additively manufactured 
nickel-based superalloys by integrating thermodynamic 
calculations and machine learning techniques. The experimental 
methodology is depicted in Fig. 4. Considering that hot cracks 
predominantly occur in the nickel-based alloys during additive 
manufacturing, the authors explored five distinct hot crack 
evaluation criteria. Among them, the hot crack susceptibility 
coefficient (HSC) exhibited a robust correlation with the 
measured crack area fraction. Utilizing experimental data and 
thermodynamic calculation outcomes, a random forest regression 
(RFR) model for superalloy crack sensitivity was developed. 
This model demonstrated excellent predictive and generalization 
capabilities, evidenced by correlation coefficients (R2) of 0.96 
and 0.81 on the training and validation sets, respectively. These 
results substantiate the model's rapid and accurate calculation of 
hot crack sensitivity of high-temperature alloy.

Moreover, as illustrated in Fig. 5, the SHapley addictive 
exPlanation (SHAP) method was employed for feature analysis 
on the model's input parameters. This analysis ranked the impact 
of alloy elements on crack sensitivity based on the SHAP values. 
The findings revealed that precipitation-strengthening elements 

such as Ti, Al, and trace elements C and B exerted significant 
influence on the crack sensitivity of nickel-based superalloys. 
Other alloy elements exhibited varying degrees of impact, with 
the order of influence ranked as follows: Re > W > Cr > Mo > 
Ta > Co.

Zhu et al. [39] introduced a high-throughput experimental 
approach, integrating machine learning, for designing titanium 
alloy compositions. In this experiment, microstructural 
characteristics (phase volume fraction, phase size) of alloys 
with varied molybdenum equivalents (Mo[q]) were predicted 
using machine learning techniques, specifically a BP neural 
network. This study demonstrated excellent agreement between 
the predicted values and the experimental outcomes. By 
combining diffusion multivariate experiments with BP neural 
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Fig. 5: Evaluation of the importance of feature parameters in machine learning crack sensitivity prediction models [38]

(a)

(b)

networks, a titanium alloy (Ti-3Al-2Nb-1.2V-1Zr-1Sn-4Cr-4Mo) 
exhibiting outstanding mechanical properties was successfully 
designed. Mechanical tests indicated that after undergoing 
solution treatment at 750 °C and aging at 550 °C for 6 h, the 
alloy achieved a remarkable balance of strength (yield strength 
approximately 1,200 MPa) and plasticity (elongation about 
12%). During the deformation process, the primary spherical 
α phase elongated, while the secondary needle-like α phase 
resisted dislocation slip, enhancing the alloy's plasticity and 
strength, respectively. Furthermore, Edern et al. [40] employed 
a Gaussian regression model to establish the functional 
relationship between alloy components, temperature, expected 
fracture time, and creep rupture stress. Through systematic 
screening and optimization within the vast dataset, a specific 
range of titanium alloy components was identified. The study 
emphasized the significant potential of machine learning 
methods in alloy composition design.

The development of alloy compositions frequently requires 
extensive and repetitive experimentation, consuming valuable 
time and necessitating a profound grasp of materials science 
alongside a proficient experimental team. Machine learning, 
however, presents an innovative avenue by which to expedite the 
alloy composition design process. Through its capacity to discern 
intricate relationships between diverse alloy components and 
desired performance characteristics, machine learning emerges 
as a powerful tool for guiding alloy composition design. This 
not only results in substantial cost savings, but also significantly 
reduces the time investment. It is abundantly clear that the 
integration of machine learning stands poised to drive remarkable 
advancements in the field of alloy composition design.

3.1.2 Prediction of alloy structure
The microscopic evolution of alloy structure during additive 
manufacturing significantly influences the quality of the printed 
workpiece. However, factors like internal temperature gradient, 
cooling rate, and material heat exchange during the additive 
manufacturing process magnify the complexity of material 
structure transformation [41]. Understanding alloy microstructure 
evolution and regulating workpiece mechanical properties 
necessitate interdisciplinary collaboration and extensive 
experimental validation. Nonetheless, Kats et al. [42] utilized 
machine learning algorithms to predict grain structure in the 
direct energy deposition (DED) process. To establish an accurate 
machine learning training set, they employed the cellular 
automata-finite volume method on DED Inconel 718. Cellular 
automata modeled grain structure, while the finite volume 
method simulated heat transfer. Subsequently, a neural network 
model was constructed to identify the relationship between 
local thermal features and corresponding grain structure 
features. It's noteworthy that Kats' neural network model 
captures the connection between local thermal characteristics 
and grain structure features. Although it doesn't directly 
establish the link between process parameters and grain 
characteristics, it still offers valuable assistance in predicting 
alloy structure during material manufacturing processes.

To leveraging databases and machine learning technology, 
Jiang et al. [43] proposed a data-driven design approach for 
alloy material structure and properties. Based on published 
experimental characterization data, they provided an accurate 
prediction plan for lattice mismatch in different phase 
compositions of additively manufactured nickel-based single 

(c)

(d)
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crystal superalloys. Results indicated that the multi-layer 
perceptron model demonstrated a high correlation coefficient 
and minimal error, which is better than traditional empirical 
formulas. Machine learning method enables more efficient 
structure predictions with fewer learning samples for additive 
manufactured metal parts, effectively reducing material design 
time and costs. Furthermore, Gan et al. [44] designed a novel 
data-driven method integrating multi-physics modeling, 
experimental measurement, and data mining to determine 
microstructure and microhardness of nickel-based superalloy 
by additive manufacturing. The experimental framework is 
illustrated in Fig. 6. An optimized model was established by 
combining process parameters (laser power, energy density, 
cooling rate) with factors like microstructure and microhardness. 
This approach maximizes the advantages of both physical and 
mathematical models.

As illustrated in Fig. 7, Asuka et al. [29] employed a 
convolutional neural network (CNN) model to analyze single 
laser scanning micrographs of WC/Co composites and low-
magnification micrographs of sintered WC/Co composites. 
Initially, the area fraction of the WC decomposition zone in 
the WC/Co composites prepared by laser powder bed fusion 
(LPBF) was quantified for training purposes. Manual labeling 
of the preliminary quantification results from low-magnification 
micrographs of sintered WC/Co composites was conducted. 
These labeled results were then utilized to train the CNN model, 
enhancing the accuracy of machine learning recognition. Through 
the application of convolutional neural networks for image 
recognition and classification, Asuka et al. [29] deduced that laser 

power and spot diameter exerted a more substantial influence on 
the phase constitution of printed WC/Co composite workpieces 
compared to the scanning rate. To validate this conclusion, they 
employed a support vector machine (SVM) model for further 
verification. Results showed the WC decomposition had been 
successfully suppressed in the samples fabricated under SVM 
recommended conditions.

The structure evolution process of material encompasses 
multifaceted elements including temperature gradient, material 
composition, and various other parameters. Consequently, 
to procure alloys with optimal performances, a preemptive 
evaluation of the influence of distinct phase constitution on 
the alloy's properties is imperative. In contrast to simulation 
techniques, machine learning models exhibit enhanced 
generalization capabilities and possess a distinctive capacity 
for self-improvement, rendering them exceptionally well-suited 
for navigating the intricacies of nonlinear relationships within 
complex scenarios.

3.1.3 Prediction of printing workpiece performance

In the current phase of rapid additive manufacturing 
development, optimizing the alloy composition and mechanical 
properties of printed workpieces still heavily relies on 
extensive experimental data. Traditional simulation methods 
encounter challenges in predicting multi-element alloy systems 
due to insufficient efficiency and accuracy. Machine learning 
methods are instrumental in uncovering hidden relationships 
between process parameters and alloy properties, such as 
surface roughness, density, and fatigue life, from experimental 

Fig. 6: Novel data-driven model based on multiphysics modeling-experimental measurement-data mining [44]
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Fig. 8: Loss function comparison chart [45]

Fig. 7: (a) Bubble chart of area fraction of WC decomposition region plotted as functions of laser power and scan speed. 
(b) Representative SEM and CNN annotated images of laser powder bed fused WC/Co composites. Changes in area 
fraction of WC decomposition region with area energy density (c), and linear sum (d) of standardized laser power (P′), 
scan speed (v′), and spot size (σ′) weighed by linear regression coefficient [29]

data. By extracting these relationships, machine learning 
techniques yield reasonable and efficient prediction models with 
generalization capabilities. This approach significantly reduces 
the development cycle of specific-property alloys, thereby 
conserving both time and research and development costs.

Surface roughness and tensile strength serve as pivotal 
metrics for assessing the quality of additive manufacturing 
workpieces. Xu et al. [45] introduced a method integrating 
Bayesian optimization and hyperband (BOHB) with BP 
neural network models for quality prediction. This algorithm 
takes layer thickness, number of scans, and filling interval as 
input parameters and utilizes the BOHB algorithm to optimize 
the hyperparameters of the BP neural network, resulting in 
the BOHB-BP model. Experimental surface roughness data, 
acquired through a central composite experiment, were used 
as model output, alongside tensile strength. To demonstrate the 
generalization and effectiveness of the constructed BOHB-BP 
quality prediction model, it was compared with other commonly 
used prediction models based on two sets of surface roughness 
and tensile strength data for fused deposition modeling (FDM) 
3D printed parts. As depicted in Fig. 8, the BOHB-BP model 
exhibits superior overall fitting and smaller prediction errors, 
enabling precise and efficient quality predictions.

Wang et al. [46] proposed the integration of BP neural networks 
with genetic algorithms to predict the density of selective laser 
melting (SLM) printed workpieces. In their experiment involving 
316L powder additive manufacturing, inputs included laser 
power, scanning speed, layer thickness, and scanning interval, 
while density served as the output parameter. The BP neural 
network model's prediction results were optimized through 

genetic algorithms, leading to a relative error of approximately 
0.73% after optimization. This optimized model provided a set of 
ideal printing process parameters. Wang's experimental outcomes 
illuminate the mapping relationship between process parameters 
and density, offering a foundation for guiding the optimization of 
additive manufacturing process parameters.

Zhang et al. [47] employed conventional machine learning 
models, including support vector machines, random forests, 
Gaussian regression, and neural networks to predict the fatigue 
life of austenitic stainless steel. The outcomes demonstrated 
superior prediction accuracy in estimating stainless steel 
fatigue life. Zhang et al. [48] also substantiated the excellent 
generalization ability of machine learning in predicting metal 
fatigue life. In their specific experiment, they proposed a 
machine learning method based on neural fuzzy technique to 
forecast the high-cycle fatigue life of laser powder melted 316L 
stainless steel. The constructed dataset encompassed diverse 
process parameters (such as laser power, scanning speed, and 
powder thickness), post-processing procedures (including 
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annealing and hot isostatic pressing), and the workpiece's fatigue 
life under cyclic stress loading. Experimental results highlighted 
the impressive prediction accuracy and interpretability of neuro-
fuzzy machine learning algorithm.

Jan et al. [49] introduced a comprehensive framework 
integrating machine learning methods and Spearman rank 
correlation analysis to address defects detected by micro-
computed tomography (μCT) and the stress amplitude's impact 
on fatigue life in AM Ti-6Al-4V. The experimental workflow, 
illustrated in Fig. 9, involved optimizing three models: 
artificial neural network (ANN), random forest regression 
(RFR), and support vector regression (SVR). To enhance the 
machine learning model's prediction accuracy, leave-one-
out cross-validation (LOOCV) technology was employed 
for hyperparameter and parameter adjustments. Comparative 
analysis of the ANN, RFR, and SVR models revealed that 
the ANN model exhibited the highest fatigue life prediction 
accuracy, with R2=0.848 and MAPE=2.980% (MAPE is 
abbreviation of mean absolute percentage error). This result 
underscored the exceptional generalization capability of neural 
network models in predicting material fatigue performance.

3.2 Machine learning guides additive 
manufacturing process optimization

3.2.1 Machine learning guides model design

Additively manufactured workpieces frequently exhibit 
discrepancies from the established 3D CAD models, necessitating 
discussions on suitable compensatory measures for model size 
design [16]. To address this issue, Chowdhury and Anand [50]

employed a neural network algorithm to compensate for 
dimensional errors arising from thermal shrinkage and printing 
collapse. As illustrated in Fig. 10, their approach involved 
utilizing the 3D coordinates of the CAD model of the printed 
workpiece as input data. Simultaneously, finite element 
simulation software was employed to perform thermal coupling 
simulations of the printing process, with the deformed simulation 
results' surface coordinates serving as the model output. The 
trained neural network model was then applied to the STL file 
of the part's CAD model, enabling the assignment of necessary 
geometric compensation to the target model.

During the laser additive manufacturing process, heat 
accumulation can lead to the degradation of the mechanical 

Fig. 9: Proposed framework of the modelling process of fatigue life prediction [49]

Fig. 10: Schematic of the point cloud to part conformity score calculation methodology [50]
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properties and surface roughness of the workpiece, which 
hampers the production of high-quality components. Strategic 
deposition path planning is pivotal in mitigating the heat 
accumulation effect, eliminating residual stress, and enhancing 
the printing success rate [51-52]. Addressing this challenge, 
in the context of sedimentation path design, Dong et al. [53] 
introduced an ANN prediction model based on the marine 
predators algorithm (MPA) to facilitate cold spraying additive 
manufacturing (CSAM). This model enabled precise geometric 
control of deposited layer profiles for CSAM processes. In 
comparison with other machine learning algorithms, the proposed 
MPA-ANN model exhibited superior performance, boasting an 
average absolute error of 0.0143 mm and a correlation coefficient 
of 0.9986. This approach significantly enhanced geometric 
control in cold spray deposition modeling and prediction, 
offering enhanced stability and prediction accuracy.

The quality of each molten pool during the additive 
manufacturing process significantly impacts the final workpiece's 
quality. Therefore, employing machine learning techniques to 
establish models correlating different process parameters with 
molten pool characteristics has become necessary to the quality 
inspection of additive manufacturing processes. Deng et al. [54] 
developed a robotic arc additive manufacturing and forming 
information detection system utilizing laser vision sensors. This 
system discerns morphological characteristics of the cladding 
path during the arc additive forming process and detects 
cladding channel features based on forming parameters. The 
gathered information is utilized for predicting the morphology 
of the deposited channel. The system uses point cloud data 
obtained from the visual sensing system to represent the 
topography of the deposited road. Various point cloud data 
processing algorithms were explored, including a statistical 
filtering algorithm based on neighborhood averaging for 
denoising, a greedy search-based algorithm for point cloud 
coordinate matrix rotation correction, and an octree-based 
point cloud slice search algorithm for obtaining the cross-
sectional profile of the formed part. This algorithm exhibits 
robustness and effectively processes point cloud data.

In a study by Parand et al [55], as shown in Fig. 11, a machine 
learning model was established for process parameters such 
as power, scanning speed, layer thickness, and molten pool 
shape parameters. Through a horizontal comparison of several 
machine learning algorithms, neural networks, gradient 
boosting and random forest algorithm demonstrated superior 
prediction accuracy for melt pool size parameters, especially 
when handling larger random sample datasets. Building 
upon this, a data-driven model identification method was 
developed based on dataset processing parameters and material 
properties, enabling the estimation of melt pool geometry. By 
using machine learning models to compensate for geometric 
deviations generated during additive manufacturing processes, 
suitable model sizes can be established more accurately, 
resulting in more accurate workpiece sizes.

3.2.2 Process window optimization

The additive manufacturing process involves complex 
interactions between multiple physical fields and various metal 
elements, resulting in highly coupled process parameters. 
Achieving appropriate process parameters often requires 
extensive trial and error experiments. While, there are some 
methods for optimizing certain parameters, such as the use of 
ANSYS finite element software to simulate electron beam power, 
scanning speed, and effects of substrate preheating temperature 
on molten pool morphology [56], empirical estimation and high 
fidelity calculation modeling of heat source energy density [57, 58].
These methods have limitations in addressing issues related 
to new alloy designs and exploring novel process windows. 
Previous optimization techniques rely on guided calculations 
or perceptual understanding based on existing data and limited 
aspects of physics knowledge. However, they struggle to 
generalize or explore new high-quality process windows 
for complex additive manufacturing processes. Numerous 
studies have demonstrated that machine learning algorithms 
effectively assist in additive manufacturing process parameter 
optimization and process window expansion, enhancing data 
utilization and maintaining high prediction accuracy without 

Fig. 11: Features, ML models, and tasks implemented in our MeltpoolNet benchmark [55]
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the need for extensive experimental trials [24]. Consequently, 
additive manufacturing process design optimization through 
machine learning has garnered significant attention from 
scholars in recent years.

In recent years, electron beam additive manufacturing has 
rapidly advanced due to its fast molding, minimal residual 
stress, and vacuum forming characteristics. Researchers have 
employed machine learning algorithms, including linear 
regression, support vector regression, and neural networks, to 
establish relationships between process parameters (such as 
scanning speed, acceleration voltage, substrate temperature, 
and powder thickness) and workpiece density [59]. Comparative 
analysis of these models revealed that while the neural 
network model achieved higher accuracy, it lacked reasonable 
explanations for many rules. In contrast, the support vector 
regression algorithm demonstrated superior accuracy, predictive 
ability, and interpretability. Qi [59] highlighted the accuracy 
of machine learning algorithms in establishing relationships 
between various process parameters and workpiece performance 
indicators. When combined with optimization algorithms like 
differential evolution and genetic algorithms, machine learning 
assists in the effective optimization of process windows.

Combining machine learning model building with 
exploration of process windows through optimization 
methods enhances the development efficiency of additive 
manufacturing process. Caiazzo et al. [52] developed an ANN-
based machine learning method to discern the correlation 
between laser deposition melting (LDM) process parameters 
and geometric parameters of metal deposition traces on 2024 
aluminum alloy plates. Their ANN model accurately predicted 
the laser power, scanning speed, and powder feed rate needed 
to achieve metal traces with specified geometric parameters. 
The average absolute percentage errors were impressively 
low, reaching 2.0% (laser power), 5.8% (scanning speed), 
and 5.5% (powder feed rate). Shao et al. [20] proposed an 
SLM additive manufacturing process optimization method 
employing neural networks and genetic algorithms. After 
preprocessing experimental data, a BP neural network density 
prediction model for IN718 alloy under low power conditions 
was established. Shao introduced a "step-by-step prediction" 
method involving iterative training of the neural network 
using a new database created from forecast data and the 
original training database. This iterative approach minimized 
the gap between the original data and the target data, thereby 
improving the accuracy of neural network results. Comparative 
analysis with orthogonal design and direct prediction 
methods revealed that the "step-by-step prediction" method 
yielded lower average relative errors for different sample 
layer thicknesses. Following the establishment of the neural 
network model, Shao utilized genetic algorithms to optimize 
the neural network, addressing the issue of the network's 
sensitivity to initial connection weights. Consequently, SLM 
additive manufacturing, guided by neural networks and genetic 
algorithms, effectively predicted workpiece performance, and 
optimized the process window.

Sun et al. [60] applied the gaussian process regression (GPR) 
model to machine learning using density and surface roughness 
data from SLM Ti-6Al-4V alloy. Their research resulted in 
the optimization of the laser power-scanning speed process 
window, represented as a pear-shaped region, as illustrated in 
Fig. 12. The optimized analysis by the GPR indicated larger 
matching scanning speed windows at higher laser powers. 
Additionally, the sensitivity of workpiece density to different 
process parameters varied; the scanning speed having a more 
significant impact on workpiece density.

Fig. 12: Predicted laser power and scanning speed 
process window based on GPR model [60]

Liu et al. [61] introduced a method employing the GPR 
model to explore the process window of AlSi10Mg alloy in 
LPBF. They established relationships between laser power, 
scanning speed, and the density of printed workpieces, 
visualized using the Gaussian model, as depicted in Fig. 13. 
Their approach resulted in a broader LPBF process window 
compared to previous experimental data, enabling the 
production of alloys with enhanced strength and ductility. Liu's 
experiment concluded that workpiece grain size exhibits a linear 
proportional relationship with laser power and scanning speed. 
The mechanical properties of the workpiece primarily rely on 
laser energy density. Slight variations in mechanical properties 
occur due to different proportional combinations of laser power 
and scanning speed, which influence grain size and sub-grain 
microstructural morphology.

In wire and arc additive manufacturing (WAAM), selecting 
appropriate process parameters is vital for controlling weld 
bead geometry and improving the forming accuracy of printed 
workpieces. Dong et al. [62] proposed the ACS-DBN model, 
based on the deep belief network (DBN) and the adaptive 
cuckoo search (ACS) algorithm. This model established 
relationships between four process parameters (nozzle height, 
welding current, welding speed, and wire feed speed) and 
weld pass size. The ACS-DBN model effectively mapped the 
complex nonlinear relationship among each WAAM process 
parameter and weld bead size, ensuring prediction results 
within controlled relative errors of 6%. As demonstrated in 
Fig. 14, Zheng et al. [63] used the BP neural network model to 
connect process parameters [wire feed speed (WFS), welding 
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Fig. 13: Visualization of GPR results [61]: (a) symbols indicate the training data for the average and standard 
deviation of the relative density at discrete parameters of laser power and scan speed; (b) response 
surface of the GPR predicted relative density mean value; (c) relative density prediction uncertainty 
represented by one standard deviation from predictive mean value

Fig. 14: Determination of the fitting function of the weld bead section: (a) weld bead 3D scanner STL file 
with section coordinate points; (b) weld bead section fitting function; (c) mean square error of fitting 
different mathematical models [63]

speed (WS), welding current (WC)] with geometric parameters. 
They employed the particle swarm optimization (PSO) 
algorithm to optimize neural network weights and thresholds. 
The prediction results indicated that weld width increased 
with increasing wire feed speed and welding current, while 
it decreased with increasing welding speed. Lower wire feed 
speed and faster welding speed facilitated the generation of 
equiaxed crystals. Furthermore, a reduced welding current 
accelerated the cooling rate of the metal melt, fostering 
dendrite formation. The interaction among WS, wire feed 
speed, and welding current has a significant effect on the bead 

width. The weld bead height is positively correlated with the 
wire feed speed and negatively correlated with the WS and 
current. The interaction between the wire feed speed and WS 
is significant. For duplex stainless steel, the optimal WAAM 
process parameters were identified as a wire feed speed of 
200 cm·min-1, welding speed of 24 cm·min-1, and welding 
current of 160 A. The BP neural network's maximum error 
in predicting weld width and height was 7.74%, whereas the 
maximum error between predicted and experimental values for 
the BP-PSO neural network was 4.27%.

(b)(a)

(c)

(b)(a)

(c)
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3.2.3 Forming monitoring and quality assessment 
of additive manufacturing products based on 
machine learning

The excellent image learning and processing 
capabilities of machine learning have led many experts 
in additive manufacturing to choose machine learning 
for process control, such as tasks like geometric 
accuracy control, melt pool feature monitoring, and 
surface defect classification [4, 43, 55]. By implementing 
predictive monitoring in the additive manufacturing 
process, the overall quality of the finished additive 
manufacturing workpieces can be significantly 
improved.

M o s t o f t h e c r i t i c a l d e f e c t s i n a d d i t i v e 
manufacturing occur during the changes in the molten 
pool. Therefore, methods enabling in-situ molten 
pool monitoring have gained significant attention. 
Zhang et al. [64] developed a dedicated edge projection 
contour sensing model for LPBF. This model, 
combined with high dynamic range (HDR) methods 
and machine learning algorithms, enhances additive 
manufacturing resolution and recognition accuracy 
when measuring surface topography features layer 
by layer. The experimental process involved two 
stages. Firstly, using the HDR method, sinusoidal 
stripe patterns of varying intensities were projected 
to alleviate shadow and high saturation issues. 
Subsequently, several neural network models 
were trained and tested using fringe projection 
profilometry (FPP) measurement data as input and 
optical microscope characterization data as output. 
The developed machine learning (DDPM-SR3) 
enhanced HDR-FPP framework effectively mitigated 
shadow and intensity saturation problems, improving 
measurement accuracy and resolution.

In another approach, as illustrated in Fig. 15, 
Wang et al. [30] designed a feedback control strategy 
for deposition width based on machine vision in 
the wire arc additive manufacturing process. Their 
visual sensing system captured molten pool images 
during welding and determined weld width using 
the segmentation network EPNet. In addition, they 
developed an active disturbance rejection control 
(ADRC) algorithm to achieve real-time control of 
the molten pool width during welding. Experimental 
results demonstrated that the control algorithm ensured 
precise control of the molten pool width, providing 
necessary strategies for online monitoring and control 
in the WAAM process.

Ye et al. [65] introduced a flexible and integrated 
method for in-situ process monitoring and melt state 
identification in the SLM process. Using a near-
infrared camera set off-axis, part condition photos 
were captured. As illustrated in Fig. 16, plume 
and spattering features, related to melt pool state 

and laser energy density, were employed in monitoring the process 
of SLM process within the deep belief network (DBN) framework. 
This algorithm structure, integrating the DBN monitoring framework 
and near infrared (NIR) captured images, demanded less signal 
preprocessing, parameter selection, and feature extraction, achieving 
a recognition rate of 83.4% for five melt pool states. Compared 
with other neural network and convolutional network models, the 
DBN model exhibited higher accuracy and suitability for additive 
manufacturing processes in complex environments.

During the additive manufacturing process, the temperature gradient 
distribution and thermal cycle significantly impact the microstructure, 
porosity, and mechanical properties of the printed workpiece [66, 67]. 
Zhang et al. [68] employed machine learning to develop a data-driven 
prediction model accurately estimating melt pool temperature in the DED 
process. Two machine algorithms, namely eXtreme gradient boosting 
(XGBoost) and long short-term memory (LSTM), were employed to 
construct the prediction model. Both models demonstrated excellent 
prediction accuracy for melt pool temperature, with XGBoost proving 
more efficient and LSTM exhibiting higher robustness. Zhu et al. [69]

proposed a physics-informed neural network (PINN) framework 
incorporating physical information. This framework integrated data 
and physical principles into the neural network to guide the learning 
process. In addition, they introduced a method for handling hard 

Fig. 16: Device diagram (a) and schematic (b) of the off-axial 
high speed camera outside the building chamber [65]

Fig. 15: Network structure: (a) EPNet; (b) pyramid pooling module [30]

(b)

(a)

(a) (b)
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Fig. 17: Comparison of predicted temperature and melt pool fluid dynamics of FEM, PINN with experiment [69]

boundary conditions (BCs) based on the Heaviside function, 
accurately enforcing boundary conditions, and accelerating 
the learning process. As depicted in Fig. 17, the performance 
of the PINN model was carefully evaluated using the finite 
element-based variational multiscale formulation method, 
comparing prediction results with existing experimental data 
and high-fidelity simulation results. The results demonstrated 
that, owing to the additional physical knowledge, PINN 
accurately predicted temperature and melt pool dynamics 
during metal additive manufacturing processes with only a 
modest number of labeled datasets. PINN's advancements 

in the realm of metal additive manufacturing underscore the 
considerable potential of physical information-driven deep 
learning for broader applications in advanced manufacturing. 
The stability of the molten pool state throughout the printing 
process plays a pivotal role in shaping the ultimate quality of 
the printed workpiece. Nonetheless, the presence of various 
sources of noise during the detection stage can significantly 
constrain the accuracy of monitoring. In this context, the 
application of machine learning algorithms offers a promising 
avenue for enhancing monitoring precision to a considerable 
extent [70].

U max = 1.812 m·s-1

Temp. (K) Temp. (K)

U max = 1.566 m·s-1

4 Summary and outlook
In recent years, the rapid advancement of artificial intelligence 
and computer technology has expanded their influence 
beyond areas like machine vision and language recognition, 
extending to engineering applications, particularly in the realm 
of additive manufacturing. Within additive manufacturing, 
machine learning finds significant application in alloy 
component design, prediction of structural properties, process 
window optimization, and inspection and quality assessment 
of the molding process. The traditional approach to process 
development necessitates numerous experiments, involving 
the analysis of complex physical processes that span multiple 
disciplines. Machine learning, however, offers a solution by 
reducing experimental costs, expediting the development 
of printable materials, and enhancing the quality of additive 
manufacturing printed workpieces. Consequently, machine 
learning has become an essential tool for engineers in the 
evolution of future additive manufacturing processes.

However, traditional machine learning methods are 
predominantly data driven. Yet, the data collected during 
the additive manufacturing process is characterized by 
its high variability, limited sample size, and considerable 
noise, making extensive predictions with specific algorithms 
challenging. This variability often results in suboptimal 
accuracy and interpretability of machine learning outcomes. 
In certain scenarios, the predictions made by machine 
learning algorithms are complex even for experts in materials 
science to interpret. Consequently, integrating materials 
science knowledge into machine learning algorithms [24] and 
developing universally applicable machine learning algorithms 
for the entire additive manufacturing process are essential 
steps. Such advancements would significantly enhance 
the correlation between additive manufacturing process 

parameters and material performance, thereby improving the 
efficiency of process control and optimization within additive 
manufacturing. As a result, enhancing the general applicability 
of machine learning in the realm of additive manufacturing 
stands as a crucial research direction, shaping the future of 
both machine learning and additive manufacturing processes.

In the field of additive manufacturing, the development 
of machine learning algorithms with robust generalization 
capabilities and high prediction accuracy necessitates substantial 
data. Thus, the establishment and continuous updating of 
databases emerge as prerequisites for the future evolution of 
machine learning within the additive manufacturing industry. 
Over the course of additive manufacturing technology 
development, scientists have accumulated an extensive 
repository of laboratory data, laying a robust foundation for 
the future of machine learning technology within additive 
manufacturing. The convergence of comprehensive databases 
with machine learning technology imbued with materials 
science knowledge is poised to dominate the new era of 
industrial revolution in the future [56].
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