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1 Introduction
Magnesium, aluminum, and other light alloy castings 
have garnered widespread applications in crucial 
domains such as aviation, aerospace, and navigation due 
to their advantages, such as low density, high strength, 
and excellent corrosion resistance [1-2]. However, as the 
requirement for core equipment parts becomes higher 
and higher, the structure of light alloy castings has 
become more intricate, incorporating features such as 
wall thickness variations, multi-cross configurations, 
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multiple rings, curved surfaces, blind holes, and complex inner 
cavities, resulting in increased molding difficulty. At the same 
time, due to the influence of metal flow and cooling shrinkage, 
light alloy castings often have internal defects, such as 
shrinkage, dispersed shrinkage, and cracks [3]. These defects have 
a negative impact on the mechanical properties and reliability 
of castings. As a result, internal defect detection has become an 
indispensable process prior to the casting's departure from the 
factory.

The existing detection methods are mainly "X-ray flaw 
detection imaging + manual film evaluation". However, this 
method has the problems of missed detections, false detections, 
and inefficiency in flaw evaluation, which seriously threaten the 
performance and safety of aircraft and other equipment. Hence, 
the utilization of flaw detection technology propelled by X-ray 
images and deep learning becomes of paramount importance in 
achieving automated film evaluation [4-6] for detecting defects in 
light alloy castings. In recent years, with the rapid development 
of image processing [7], machine learning [8], deep learning [9],
as well as the continuous improvement of digital image 
acquisition equipment and graphics processors [10], research on 
object detection and recognition driven by deep learning has 
been widely used in transportation [11], chips [12], and medicine [13].
However, due to the large scale span and various shapes of 
internal defects in castings, deep learning requires a large 
number of training samples to make the network performance 
robust [14-19]. What's more, in the actual application process, it 
is difficult to obtain a large number of flaw samples, which 
has also become a major obstacle restricting the engineering 
application of intelligent detection in the foundry industry.

In response to this problem, many scholars have carried out 
research on image augmentation and simulation generation. 
In 2018, Frid-Adar et al. [20] proposed to increase samples 
and improve the performance of image classification by 
synthesizing medical images through an adversarial network. 
In 2021, Mery [21] used GAN (Generative adversarial networks) 
to generate flaws, and projected them onto ray images to 
obtain defective image samples for defect detection and 
labeling research. In 2022, Mery et al. [22] used X-ray images to 
superimpose simulated targets based on Beer-Lambert law to 
generate training data. However, the existing research has not 
addressed the issues of poor diversity in flaw samples and low 
reliability in quality evaluation during the X-ray radiographic 
image augmentation for internal defects [23] in light alloy 
castings. Due to the high resolution of X-ray radiographic 
images of light alloy castings, directly using existing GAN 
networks makes it challenging to generate high-quality 
simulated images. Traditional mathematical transformations 
such as rotation are still used for image augmentation. The 
direct use of these images for training intelligent detection 
models has shown unsatisfactory results [24]. Additionally, 
when using GANs for simulation generation, there is a lack 
of comprehensive indexes for evaluating the quality of the 
generated images. Relying solely on the loss function or the 
FID (Fréchet Inception Distance) index does not fully explain 

the quality of the generated images, making it difficult to 
determine whether they are suitable for direct use in training 
intelligent detection models.

Therefore, in this study, the I-DCGAN (Interpolation-Deep 
Convolutional Generative Adversarial Networks) model and the 
TOPSIS-IFP (TOPSIS-IP/FID/PSNR) comprehensive evaluation 
algorithm were developed. The aim of this approach is to 
achieve the generation of high-resolution simulated images 
with diverse appearances and conducted multi-dimensional 
quality evaluations, including diversity, authenticity, image 
distribution differences, and image distortion degree, all while 
maintaining relatively low computational complexity. The 
framework is shown in Fig. 1.

2 Image simulation
Deep convolutional generative adversarial network [25] (DCGAN) 
is a classic generative adversarial network architecture for 
generating realistic images. DCGAN combines the ideas of 
deep convolutional neural network (CNN) and generative 
adversarial network (GAN), aiming to solve the problem of 
low image generation quality in traditional generative models. 
DCGAN is composed of two main components: Generator and 
discriminator. During the training process, DCGAN uses the 
augmented image as a real image input through confrontation 
training to fight against the fake image generated by the 
generator. This prompts the generator to generate more realistic 
and accurate flaw images, while the discriminator needs to 
learn to distinguish the difference between real images and 
generated images. Throughout the training process, not only 
does the generator's image generation proficiency undergoes 
continuous enhancement, but also the discriminator's ability 
to discriminate between real and generated images improves 
concomitantly.

There are a total of 39 flaw images of magnesium alloy 
and 880 flaw images of aluminum alloy. To minimize the 
computational complexity of the DCGAN network and enhance 
the performance of image generation, the difference algorithm 
was integrated into both the generator and discriminator, 
thereby formulating the I-DCGAN architecture. Additionally, 
data augmentation techniques were applied specifically to 
magnesium alloy images. Data augmentation is a method to 
generate more diverse and rich training samples by applying a 
series of transformations and processing to the original image.

The goal of data augmentation is to increase the quantity and 
quality of training data by introducing diversity and randomness, 
thereby improving the generalization ability and robustness of 
the model. By applying various transformation and warping 
operations to the original image, data augmentation can 
create new images with different perspectives, scales, light 
intensity conditions, and noise levels. For magnesium alloy 
images, following methods were used to help to improve the 
adaptability of the model under different angles and imaging 
parameters of X-ray flaw detection equipment: flipping (by 
flipping the image horizontally or vertically, the training set 
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Fig. 1: I-DCGAN model and TOPSIS-IFP algorithm created in this study

can be extended and different angles of view can be simulated), 
cropping (by randomly cropping a part of the image and 
resizing it to a fixed size, different flaw sizes and positions can 
be simulated, providing position invariance to a certain extent), 
rotation (by rotating the image, the appearance of flaws at 
different angles can be simulated, which helps to improve 
the robustness of the model to rotation changes), scaling and 
translation (by adjusting the size and position of the image, 
flaws can be simulated under different distances and visual 
scales), brightness and contrast adjustment (by changing the 
brightness and contrast of the image, the appearance of flaws 
under different light intensity conditions can be simulated, 
which can increase the adaptability of the model to changes 
in light intensity), and noise increase (by introducing random 
noise to the image, the simulation of noise and interference 
in real-world scenarios can be achieved, thus bolstering the 
model's robustness and noise suppression capabilities). The 
advantage of employing augmented images as real training 
data for DCGAN lies in the introduction of a broader spectrum 
of image transformations and distortions. This approach 
enables the model to more effectively assimilate the distinctive 
characteristics and distribution of flaw images, as depicted in 
Fig. 2. By augmenting the original magnesium alloy images, 
applying augmentation once more to the augmented images, 
and utilizing a random selection method, a dataset of 9,984 
magnesium alloy images is obtained.

The input, output, and structure of the constructed 
I-DCGAN network are shown in Fig. 3. The resolution of 
flaw detection images for magnesium and aluminum alloys 
is set at 416×416 pixels. Due to the limited memory capacity 
of commonly used computing platforms, especially PCs with 
a low-memory single graphics card, effectively accelerating 
deep learning models that require high-resolution images 
as input poses challenges. What's more, X-ray radiographic 
images of light alloy castings often have high resolutions, as 
seen in this study with a resolution of 416×416. If to directly 
construct a network structure without considering these high 
resolutions, not only the required number of network layers 
and computational complexity increase exponentially, but also 
the network structure struggles to effectively learn the training 
set features, especially when dealing with a limited amount of 
training data. To address this, the images were interpolated to 
substantially reduce computational complexity and network 
depth. This interpolation involves both upsampling and 
downsampling. Upsampling was used to increase the image 
resolution from 64×64 to 416×416, while downsampling to 
reduce the image resolution from 416×416 to 64×64. The 
generator takes a random sampling (channel =100, height or 
width=1) from the normal distribution space as its input. This 
input then passed through the network structure specified in 
Table 1, transforming it into a 3×64×64 image. Subsequently, 
the image was upsampled to a final size of 3×416×416. The 
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Fig. 3: Schematic diagram of I-DCGAN input, output, and 
network structure

input to the discriminator was a 3×416×416 image, which underwent 
downsampling to be converted into a 3×64×64 image. Subsequently, 
it traversed through the network structure depicted in Table 1, 
culminating in a final output size of 1. This output was utilized to 
discern the authenticity of the generated image. The hyperparameters 
were set as follows: the sampling space dimension of the generator 
input was 100, the loss function was binary cross-entropy loss, the 
optimization algorithm was Adam, the learning rate was 2e-4, the 
batch size was 128, and the number of epochs was 800.

The generator loss function is shown in Eq. (1), the 
discriminator loss function is shown in Eq. (2):

(1)

where bs represents the batch size, w denotes the 
weight, typically set to 1. Zi is hidden space vectors 
obtained by sampling from a Gaussian distribution, 
G denotes the genera tor, and D s tands for the 
discriminator. Xi is gray scale data representation 
of images obtained through sampling from the 
dataset.

The loss function and simulated images (composite 
simulated images generated by the generator at various 
training epochs, namely 1, 100, 200, ..., 800, with the 
existing parameter values) during the image training 
process of magnesium and aluminum alloys are shown 
in Fig. 4. Since I-DCGAN considers the overall image 
characteristics of the training set, it generates more diverse 
flaws than mathematical transformation augmentation 
methods such as rotation (traditional methods do not 
really enrich the flaw morphology). Regarding magnesium 
alloys, except for the models generated in the initial epoch, 
it is challenging to discern which epoch holds the highest 
image quality through human observation. Similarly, for 
aluminum alloys, aside from the initial three epochs, it is 
difficult to identify which epoch exhibits the highest image 
quality. Thus, it is suggested to create a comprehensive 

(2)

Fig. 2: Illustration of image augmentation
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Fig. 4: Schematic diagram of image training loss function and effect of generated image: (a) magnesium alloy; 
(b) aluminum alloy

Table 1: Network architecture of generator and discriminator (BN: batch normalization)

Network Layer Output size Detail

Generator

Transposed Conv + BN + ReLu 512×4×4
Kernel size = (4, 4)
Stride = (1, 1)
Padding = (1, 1)

Transposed Conv + BN + ReLu 256×8×8
Kernel size = (4, 4)
Stride = (2, 2)
Padding = (1, 1)

Transposed Conv + BN + ReLu 128×16×16
Kernel size = (4, 4)
Stride = (2, 2)
Padding = (1, 1)

Transposed Conv + BN + ReLu 64×32×32
Kernel size = (4, 4)
Stride = (2, 2)
Padding = (1, 1)

Transposed Conv + Hard Tanh 3×64×64
Kernel size = (4, 4)
Stride = (2, 2)
Padding = (1, 1)

Discriminator

Conv + Leaky ReLu 64×32×32
Kernel size = (4, 4)
Stride = (2, 2)
Padding = (1, 1)

Conv + BN + Leaky ReLu 128×16×16
Kernel size = (4, 4)
Stride = (2, 2)
Padding = (1, 1)

Conv + BN + Leaky ReLu 256×8×8
Kernel size = (4, 4)
Stride = (2, 2)
Padding = (1, 1)

Conv + BN + Leaky ReLu 512×4×4
Kernel size = (4, 4)
Stride = (2, 2)
Padding = (1, 1)

Conv + Sigmoid 1
Kernel size = (4, 4)
Stride = (2, 2)
Padding = (0, 0)

(a) (b)
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evaluation index for simulated flaw detection images of light 
alloy castings, in order to choose the best generative model from 
the 800 training epochs.

3 Quality evaluation
In order to quantitatively evaluate the quality of generated 
flaw detection images, a comprehensive evaluation algorithm 
for simulated images was proposed, combined with inception 
score (IS), Fréchet inception distance (FID), and peak signal-
to-noise ratio (PSNR) to assess simulated images from 
various dimensions, including diversity, authenticity, image 
distribution difference, and image distortion degree.

Inception score aims to measure the diversity and realism 
of generated images. Diversity means that GAN can generate 
images of different categories and styles; trueness means that 
the generated images and real images have a similar distribution 
in the feature space. The IS calculation method includes 
calculating the class probability distribution of each generated 
image and calculating the KL (Kullback-Leibler) divergence. 
Firstly, employ the pre-trained inception model to perform 
forward propagation on each generated image, obtaining the 
output of each image on the Inception model. Subsequently, for 
each image in the generated image collection, calculate the KL 
divergence between its class probability distribution and the 
average class probability distribution of the entire generated 
image collection. Finally, take the average as the final IS. 
Generally, a higher IS indicates that the generated images have 
better diversity and realism.

FID aims to measure the difference between the distribution 
of generated image and the real image. It uses the statistical 
information of the feature vectors extracted by the inception 
model to calculate the distance between distributions. FID takes 
into account the diversity and quality of generated images, 
where a lower FID value indicates a smaller difference between 
the distribution of generated images and real images. The FID 
calculation steps are as follows: firstly, use the pre-trained
Inception model to perform forward propagation on the 
real image and the generated image, and extract the feature 
vector of each image; secondly, calculate the mean value and 
covariance matrix of the feature vector; finally, utilize the 
mean vector and covariance matrix of the real image feature 
vector as the reference distribution, and generate the mean 
vector and covariance matrix of the image feature vector as the 
test distribution. Then, calculate the Fréchet distance between 
the reference distribution and the test distribution to quantify 
the disparity between the two distributions.

PSNR is used to measure the degree of distortion of 
the image, that is, the difference between the processed or 
compressed image and the original one. The higher the PSNR 
value, the lower the distortion of the image and the better the 
quality. The calculation method is as follows: firstly, the original 
image and the processed one are used as a matrix; secondly, 
the difference between them is calculated pixel by pixel, and 
the square is calculated; thirdly, the results of all the squares 

are added and divided by the number of pixels of the image to 
obtain the mean square error; finally, the peak signal-to-noise 
ratio is calculated.

In order to integrate multiple evaluation indexes and assess 
the quality of generated flaw detection images effectively, 
TOPSIS-IFP comprehensive evaluation algorithm using the 
TOPSIS (Technique for Order of Preference by Similarity 
to Ideal Solution) method [26] was proposed. Comprehensive 
consideration of the weights and differences among indexes 
provides more accurate evaluation results. The followings are 
the detailed calculation steps of TOPSIS-IFP:

Firstly, each index was normalized to a range between 0 
and 1. For IS and PSNR, the index value is subtracted from 
the minimum value and divided by the difference between the 
maximum value and the minimum value when normalizing, as 
shown in Eq. (3):

(3)

(4)

NS = (S-MINS) / MAXS-MINS

NS = (IS-MINS) / MAXIS-MINIS

where NS is the standardized score, S is the original score, 
MINS is the minimum score, and MAXS is the maximum score.

For indexes that bigger is better (such as IS and PSNR), 
they are directly processed according to Eq. (3). For FID, it is 
processed in a reciprocal manner, as shown in Eq. (4):

where MAXIS represents the maximum value after taking the 
reciprocal of the index, and MINIS represents the minimum 
value after taking the reciprocal of the index.

Secondly, each index is assigned a weight, and a decision 
matrix is constructed to reflect its importance in the quality 
evaluation of generated flaw detection images. Since the 
flaw detection image is different from the natural one, the 
evaluation based on IS will show a large value when the epoch 
is small. At this juncture, the quality of the casting appears 
significantly blurred, making it challenging to generate a 
recognizable flaw detection image. PSNR measures the 
peak signal-to-noise ratio between the generated image and 
the original one, and the evaluation is relatively one-sided. 
Therefore, the weights of these two indexes are set to be small. 
In this case, the weights of IS, FID, and PSNR are set to 0.2, 
0.6, and 0.2, respectively. In the constructed decision matrix, 
each row represents a solution (the generated flaw detection 
image), each column represents an evaluation index, and the 
standardized index values are filled into the decision matrix.

Thirdly, determine the ideal solution and the negative ideal 
solution, which is also a key step in the TOPSIS method. 
An ideal solution means each index takes the maximum 
value, while a negative ideal solution is on the contrary. By 
calculating the Euclidean distance, the distance between the 
positive ideal solution and negative one can be obtained. 
Next, calculate the proximity of each solution by comparing 
the distance between the negative ideal solution and the ideal 
solution to the distance between the practical solution and the 
ideal solution.
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Fig. 5: TOPSIS-IFP scheme diagram

Finally, the solutions are ranked according to their closeness 
(TOPSIS-IFP value), which is used to characterize the quality 
of the comprehensive evaluation results, as shown in Fig. 5.

Based on the flaw detection images of magnesium and 
aluminum alloys generated in the previous steps, the quality of the 
simulated images is comprehensively evaluated for the training 
epochs at 100, 200, 300, 400, 500, 600, 700, and 800. The 
above generation models were named as Mg-E100, Mg-E200,
Mg-E300, Mg-E400, Mg-E500, Mg-E600, Mg-E700,
Mg-E800, Al-E100, Al-E200, Al-E300, Al-E400, Al-E500, 
Al-E600, Al-E700, Al -E800. Each model generates 640 
simulated images, the evaluation batch size is 64 (64 images 
are evaluated as a group), and each model obtains 10 values 
for each index. After discarding the maximum and minimum 
values and calculating the averages, the values of the 
three indexes for each model are presented in Table 2. The 
evaluation score trend chart can be viewed in Fig. 6(a).

The weights of IS, FID, and PSNR are set to 0.2, 0.6, and 0.2, 
respectively. Comprehensive scores are calculated according 
to the TOPSIS-IFP, as shown in Table 2 and Fig. 6(b). For the 
magnesium alloy model, the optimal order is E800, E600, E400, 
E700, E500, E200, E300, E100; for the aluminum alloy model, 
the optimal order is E600, E800, E700, E100, E500, E300, 
E400, E200. Figure 7 illustrates the comparison of generated 
images arranged in the ranking order of comprehensive indexes 
and the optimal images corresponding to different indexes. 

Table 2: Single index and TOPSIS-IFP evaluation form

Alloy Index E100 E200 E300 E400 E500 E600 E700 E800

Mg

IS 3.98 3.87 2.87 2.90 3.18 2.72 2.70 2.92

FID 883.74 683.90 693.50 617.38 630.02 591.40 597.42 570.40

PSNR 15.32 15.90 15.37 15.66 15.33 15.61 15.53 15.80

TOPSIS-IFP 0.240 0.598 0.435 0.681 0.612 0.706 0.679 0.787

Al

IS 9.28 5.19 5.42 5.49 6.23 4.53 3.55 4.04

FID 1,652.11 1,610.48 1,588.71 1,587.00 1,586.97 1,328.52 1,290.41 1,333.24

PSNR 15.98 15.61 15.86 15.75 16.16 16.20 15.98 16.44

TOPSIS-IFP 0.264 0.118 0.183 0.173 0.259 0.738 0.730 0.726

Fig. 6: Single index and TOPSIS-IFP evaluation chart: (a) single index; (b) TOPSIS-IFP index

(a) (b)
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Fig. 7: Comprehensive ranking of generated images and comparison of optimal image in different indexes: 
 (a) original image; (b) magnesium alloy generated images; (c) aluminum alloys generated images; 
 (d) optimal image comparison of magnesium alloy with different indexes; (e) optimal image 

comparison of aluminum alloy with different indexes; (f) real defect images; (g) TOPSIS-IFP 
optimum simulated defect images

(a) (b) (c)

(d) (e)

(f) (g)

For the X-ray radiographic images of magnesium and 
aluminum alloys, training the models up to the 800th and 
600th epochs respectively, the TOPSIS reaches its optimal 
value, with a similarity to the ideal solution of 78.7% 
and 73.8%, respectively. According to Table 2, the X-ray 
radiographic images of magnesium alloy in E600 and E800, 
as well as aluminum alloy in E600, E700, and E800, exhibit 
a high degree of similarity (over 70%) to the ideal solution. 
Compared to other epochs, these epochs demonstrate higher-
quality generated images, as illustrated in Figs. 7(b and c). The 
TOPSIS-IFP algorithm can effectively select higher-quality 
simulated images based on their similarity to the ideal solution, 
which is an advantage that single index evaluation lacks.

As shown in Figs. 7(d and e), the single index optimal 
epochs for magnesium alloy are E100, E800, and E200 for IS, 
FID, and PSNR, respectively. For aluminum alloy, the single 
index optimal epochs are E100, E700, and E800 for IS, FID, 
and PSNR, respectively. The FID index identifies E800 as the 
optimal for evaluating simulated magnesium alloy images, 
which aligns with the TOPSIS-IFP result. However, for 
aluminum alloy simulated images, the optimal epoch according 
to FID is E700, which is not reliable. The generated images 
from E700 exhibit noticeably lower edge clarity compared to 
the TOPSIS-IFP's optimal epoch, E600. In the evaluation of 

simulated aluminum alloy images, the PSNR identifies E800 
as the optimal, while for magnesium alloy, it selects E200 as 
the best. However, the visual quality of the generated images 
is quite poor, as depicted in Figs. 7(f and g), which showing 
the real defect instances and simulated defect instances.

The above results imply that the TOPSIS-IFP evaluation 
algorithm performs better than the limited single index evaluation, 
effectively mitigating the problem of unreliable quality.

4 Conclusions
(1) The I-DCGAN network structure is constructed, 

considering the high-resolution feature of X-ray radiographic 
images of light alloy castings. To address this characteristic, an 
interpolation algorithm is incorporated into the network structure. 
This allows for the generation of high-resolution simulated 
images with diverse appearances, all while maintaining a 
relatively lower computational complexity. Consequently, it 
significantly improves both the diversity and quality of the 
generated samples. Furthermore, this approach effectively 
addresses the issue of poor diversity in flaw samples that has 
been present in mathematical transformation augmentation 
methods such as rotation.

(2) A TOPSIS-IFP comprehensive evaluation algorithm is 
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proposed, which realizes multi-dimensional quality evaluation 
such as diversity, authenticity, image distribution difference, and 
image distortion degree. For the X-ray radiographic images of 
magnesium and aluminum alloy castings, training the models 
up to the 800th and 600th epochs respectively, the TOPSIS-IFP
value reaches its optimal value, with a similarity to the ideal 
solution of 78.7% and 73.8% respectively. Compared to 
single index evaluation, the TOPSIS-IFP algorithm achieves 
higher-quality simulated images at the optimal training epoch, 
effectively mitigating the problem of unreliable quality.

The image generation and comprehensive quality evaluation 
method developed in this study provides a new approach for 
image augmentation in flaw recognition, holding significant 
importance in enhancing the robustness of subsequent flaw 
recognition networks.
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