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1 Introduction
Numerical simulation is a popularly used analysis 
method to solve ordinary and partial differential 
equations (ODE, PDE) using numerical methods such 
as the finite element method (FEM), finite difference 
method (FDM), and finite volume method (FVM), 
boundary element method (BEM), etc. [1-5]. Numerical 
simulation requires the discretization of the CAD models 
into elements, which can be challenging for complex 
objects, the establishment of constitutional models, 
which can be hard for some unknown mechanisms 
behind phenomena, the solution of large scale equation 
sets, which usually takes a long time and may be hard 
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to converge. In addition, the rapid development of deep 
learning (DL) method offers an alternative to replace 
or enhance numerical simulation. In these years, many 
kinds of DL models sprout, such as deep neural network 
(DNN), convolutional neural network (CNN), recurrent 
neural network (RNN), and generative adversarial 
networks (GANs), etc. These models have been widely 
used in image processing such as image segmentation, 
image recognition, etc. [6-11]. In 2022, Ho et al. [12] 
proposed diffusion models and these models achieved 
great success in image processing. 

In recent years, some researchers have been trying to 
introduce the DL method to perform prediction tasks 
as a surrogate for numerical simulation. Zhang et al. [13] 
used a physics informed neural networks (PINNs) 
model to solve the geometry identification problems 
of voids or inclusions in a matrix that incorporated 
the PDEs of solid mechanics in the loss function. 
Tang et al. [14] established a 3D recurrent residual U-Net 
model. As it was trained on the simulated dynamic 3D 
saturation and pressure fields of oil-water two phase 
flow for a set of random ‘channelized’ geomodels, the 
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saturation and pressure evolution for 3D channelized models 
can be predicted. Yi et al. [15] employed a two-branch U-Net 
model to predict the thermal gradient in the formed tacks for 
laser powder bed additive manufacturing. Yang et al. [16] used 
convolutional recurrent neural networks to predict various 
microstructure evolution phenomena. Diffusion models also 
show potential in computational chemistry [17].

These research works demonstrate the potential of deep 
learning models to address the scientific computation problems. 
However, up to date, they are still dealing with very simple 
problems, and there is no research on the application of diffusion 
model in scientific computing area. 

Casting is one of the main manufacturing methods. The 
numerical simulation of the casting process is important for 
the understanding and optimization of casting process [18-19]. 
Heat transfer is the fundamental of the casting process, which 
dictates solidification behavior, stress and strain development, 
microstructure evolution, and the occurrence of defects such 
as shrinkage porosity, cracks, deformation, etc. Therefore, 
heat transfer was selected for deep learning studies in this 
study. The conditional diffusion model was introduced as a 
surrogate model to simulate the casting process. The problem 
of predicting the temperature fields of castings with different 
shapes at different solidification times was investigated.

2 Diffusion model for the simulation 
of casting process

2.1 Conditional diffusion model
Diffusion models are a class of likelihood-based models 
that make use of two Markov chains: a forward chain that 
gradually injects noise into the signal, and a reverse chain 
that successively reduces noise to the original data [12]. The 
former is typically to transform any data distribution into a 
simple prior distribution (e.g., standard Gaussian), while the 
latter Markov chain reverses the former by learning transition 
kernels parameterized by deep neural networks. The forward 
process is a noise-adding process, called diffusion process, and 
the reverse process is called denoising process. In inferring, 
new data points are subsequently generated by first sampling 
a random vector from the prior distribution, followed by 
ancestral sampling through the reverse Markov chain. 

During the noise-adding process, the noise is added as 
follows at t step:

where ε is the noise sampled from the standard normal 
distribution N(0, 1), βt is weight constant changing linearly 
with t in the range (0, 1). Thus, the new state is the function of 
the value of the last step yt-1 and the noise ε.

During denoising process, firstly, the deep neural networks, 
a Res-U-Net [20], was trained by the input of yt, and the mean 
and variance of noise is the output, thus the noise responding 
to yt-1 and yt is obtained by sampling the given mean and 

where εθ(yt, t) is the noise obtained from the trained Res-U-Net 
model for step t. The noise is correlated to yt and t, αt=1-βt,  
is as follows:

(1)

(2)

(3)

The noise for each step is different, in order to consider the 
difference of time steps, a unique location code is set for each 
time step, which is related to t. It is expressed as follows:

where 
model

 , dmodel is the model number h×w×ch, 

h, w, and ch are the height, width, and channel number of a 
image, x(r, s) is the pixel at (r, s) position in the image. Thus 
for each pixel in each channel, there is a value corresponding 
to a time step.

The conditional diffusion model used in this study is shown 
in Fig. 1. Compared with the vanilla diffusion model, the 
conditional diffusion model leveraged extra information, 
for example, initial shape of the casting which is used as the 
model condition to help training and sampling. It adopts a 
Res-U-Net [20] by adding residual blocks, which can improve 
the prediction result [21], as shown in Fig. 2. The Res-U-Net 
model is aimed during the reverse process to estimate the 
noise added during the forward process. In this model, there 
are mainly down sampling branch and up sampling branch 
which are symmetrical. Between the down sampling and up 
sampling, there are skip connections for the same level from 
down sampling to up sampling. In the down sampling, there 
are several layers of residual blocks and pooling, where the 
residual block containing the combination of convolutions, 
normalization, and activation. So, the image size is gradually 
reduced by pooling. In the up sampling, deconvolution is taken 
to gradually expand the image size to the size of input image, 
and residual blocks are taken for each layer as well. For the 
conditional diffusion model, there are two inputs of Res-U-Net 
model, one is condition, and the other is the image with noise 
added yt. The two inputs are concatenated into 6 channels 
firstly and then treated by a convolution. The following is 
residual blocks. The residual block consists of three paths, one 
containing two convolutions, one shortcut convolution, and 
the treating of time step, which is also a h×w×ch array, the 
same size as the treating of input images. In the residual blocks 
the processing is repeated several times (n_Resnet). The 
embedding of time step information t begins with the coding 
of t and input by Eq. (4), and followed by two consecutive 
neural networks. Thus, the obtained h×w×ch array is fed into 
the residual blocks in layers of both of the down sampling and 
up sampling.  

(4)model -1

variance. Then, this noise is removed from yt to acquire yt-1. 
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Fig. 2: Res-U-Net model and residual block: (a) Res-U-Net model; (b) residual block

Fig. 1: Conditional diffusion model

(a) (b)

(5)
(6)

2.2 Loss function
The difference between the predicted noise and actual noise 
was used for the loss function [12]:

2.3 Accuracy evaluation
The MAE (mean absolute error) between the predicted and 
actual values of all the pixels of the output image was used as 
the accuracy index, as follows:

Fig. 1: Conditional diffusion model

where xi is the true value,  is the predicted value, i represents 
a single pixel, sum(i) is the total number of pixels, which is 
128×128.

where t is the time step, t∈(0, T), T is the maximum step, x is 
the input condition, θ is a parameter set to be trained in the 
Res-U-Net, p represents the levels of norms with value of 1 
or 2 for the first norm or second norm. The L1 Loss (p=1) 
is applied which is proved to reduce the voracity of images 
according to Ref. [22], which is suitable for the prediction of 
temperature fields. 

(7)
°C
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Fig. 3: Sand mold casting model after adding risers and chills: (a) basic shape of casting; (b) eroded casting; 
(c) model of casting, chill, riser, and mold; (d) examples of casting models

(a) (b)

(d)

3 Preparation of training and validation 
sets

The premise of the neural network is training. Therefore, it is 
necessary to prepare a training set. In order to cover as more as 
possible casting shapes, a wide range of geometries of castings 
should be included in the training set to cover most of casting 
features. 

3.1 Preparation of geometrical models
It is difficult to directly construct the CAD models of numerous 
geometries using CAD software. As the document editing 
software, Microsoft Word provides databases of characters 
from many languages and many kinds of symbols, hundreds 
of these characters and symbols were typed into a document 
file with the same size and character spacing and line spacing. 
Then, their images were separately captured as the shapes to 
represent 2D basic casting shapes. The foreground color of the 
image was set as white to be the casting and the background as 
black to represent mold, as shown in Fig. 3. 

To further expand the casting geometries, a random erosion 
method (REM) was proposed. A circle was used as an erosion 

source, which moves in the image field to erode the casting 
geometries as it meets casting pixels. The position of a 
circle was placed in the image randomly and the erosion was 
performed many times to obtain many new shapes of castings, 
as shown in Fig. 3. Then, the topological features were checked 
to get rid of the isolated areas by the two-pass method. The 
image size was set as 128×128, and the casting was no bigger 
than the image size, roughly in the range of 0.3-0.8 of the 
image. The casting size can be adjusted by setting the actual 
size corresponding to pixels.

Based on the obtained casting models, risers and chills were 
added to reflect the actual casting process. The top and bottom 
of these casting models were judged, a riser was formed by 
extending the top of the casting to the top border of the image 
with a taper of 2° marking with white, the same color as the 
casting. The bottom of the casting was expanded downward to 
20 pixels which were treated as chill by marking grey color. 
This results in the casting having a riser on the top and chill 
on the bottom, which facilitates sequential solidification and 
feeding during the solidification process, as shown in Fig. 3. 
The surrounding area of the casting and chill was the molds. 
By this way, 900 geometrical shapes were established.

(c)
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T=(T-Tmin) ×255/Tmax (8)

Table 1: Materials properties

Materials Thermal conductivity 
(W·m-1·K-1 )

Specific heat
(J·kg-1·K-1)

Density
 (kg·m-3)

Initial temperature
(°C)

Latent heat
(J·kg-1)

Cast Al alloy 140 880 2,680 700 425,000

Sand mold 1.25 469 1,590 25 -

Chill 48 468 7,800 25 -

3.2 Preparation of simulated results
The images of castings with chills and molds were used as 
the input for the heat transfer simulation, and each pixel can 
be treated as a finite difference mesh. The size of each pixel 
was supposed to be 0.005 m×0.005 m to roughly represent the 
popularly used casting size in the range of 200-500 mm. The 
casting, chill, and mold were given the typical materials used 
in casting production, aluminum alloy, steel, and sand mold, 
respectively. The boundary conditions between the casting top 
surface and the mold with environment were set as convection 
and radiation. The initial temperature of castings was set as 
the temperature of the liquid melt, and those of chill and mold 
were set as the environment temperature. In this case, the 
material properties and initial conditions are listed in Table 1.
The mold-air and casting-air boundaries were treated as natural 
convection with heat transfer coefficient of 20 W-1·m-2·K-1 and 
25 W-1·m-2·K-1, respectively. The heat resistance of boundaries 
among casting, chill, and mold was supposed to be 10-3 W-1·m-2·K-1, 
the heat transfer at these boundaries are treated by the heat 

Table 2: Experimental environment

Items Contents

GPU1 NVIDIA GeForce GTX 1080 Ti

GPU2 NVIDIA GeForce GTX 1080 Ti

Operation system Ubuntu 18.04

Libraries Pytorch 1.13.1

Python version Python 3.7.16

Table 3: Hyperparameters used for training

Items Values 

Res-U-Net CNN kernels 3×3

n_Res_block 2

Batch size 12

Optimizer Adam

Diffusion maximum time step, tMax 2,000

Drop out 0.2

Weight of noise, βt [0.0001-0.02]

Iteration number 1e5

resistance model, i.e., the total heat resistance between a pair 
of boundary meshes was the resistance of each side and the 
boundary resistance.

The initial temperature field was kept as images serving as 
the input. The temperature is converted into color gray scale 
by Eq. (8):

where Tmax, Tmin are the maximum and minimum temperatures, 
respectively. For the gray scale, the range is from 0 to 255.

The numerical simulation was carried out using a self-
developed code based on Python, which is a 2D calculation 
program. It was programmed to batch-process all the casting 
geometries for numerical simulation. The output is also images 
in gray scale, with each pixel corresponding to one mesh and 
color representing temperature. The temperature fields at 10 min, 
20 min, 30 min, 40 min, 50 min, and 60 min are obtained and 
used for the training of the diffusion models. They are denoted 
as Ti at ti, i=0, 1, 2, 3, 4, 5.

4 Training 
The basic program downloaded from Ref. [22] is written 
in Pytorch. The channels of input and output channels are 
modified to one for images at gray scale. The operating 
system is Linux. The hardware and software specifications are 
summarized in Table 2. The hyperparameters used for training 
are summarized in Table 3. 

Three training schemes were set, as shown in Table 4. 
Scheme 1 takes the geometry models as input, and the output 
is the temperature fields at different times, a diffusion model 
for each time step. Thus, there are six diffusion models for 
the six time steps, i.e., each diffusion model for the prediction 
of each temperature field Ti. For Scheme 2, the input is the 
initial temperature field, a diffusion model for each time step, 
therefore, there are six diffusion models for six time steps as 
well. For Scheme 3, the input is the temperature at ti, and the 
output is the temperature field at ti+1, so, only one diffusion 
model corresponds to the six time steps. The Scheme 3 can 
be applied in two cases, one is the input of the already known 
temperature field at ti, then the temperature field at ti+1 can 
be predicted. The other case is to continuously predict all 
of the temperature fields at different times by inputting the 
initial temperature T0 at t0, by which the temperature T1 at t1 
is predicted, then it is fed into the diffusion model as input to 
predict the temperature field T2 at t2. Thus, by this way, the 
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Fig. 4: Loss and accuracy variation with iterations of 
Scheme 3

final temperature field T5 at t5 is obtained. This case is for the 
prediction of a series of temperature fields at different times of 
a new casting. For Schemes 1 and 2, 302 geometries were used 
for training, and for Scheme 3, 1,806 samples were used with 
302 geometries timing 6 time steps for each geometry.

5 Prediction
As the diffusion models were trained, they were used to 
predict the temperature fields for any different castings. The 
loss, accuracy, training and prediction time of each scheme are 
listed in Table 4. It can be seen that the prediction time for a 
single geometry model is less than one minute. The accuracy is 
positively related to the loss. The Scheme 3 owns the highest 
accuracy for the case of single step prediction, reaching 
97.7%. The continuous prediction based on Scheme 3 is of 
the lowest accuracy as 69.1%. The decaying of loss with the 
iteration number of Scheme 3 is shown in Fig. 4. After 20,000 
iterations, the loss continuously decreases to a small value, and 
the accuracy reaches a high level. 

Examples of the isolated predicted results are shown in Fig. 5. 
The comparison of the predicted and simulated results of different 
time steps illustrates relatively good agreement, with just very few 
pixels with high temperature differences over ± 20 °C. 

Examples of continuously predicted results by Scheme 3 
are shown in Fig. 6. The input is just the initial temperature 
field, and the temperature fields of 10-60 min are predicted 
step by step with the predicted results as the input for the next 
step. The casting and mold temperature are extracted from 
the predicted results so as to observe the temperature fields at 
different scales. From the predicted results, it can be seen that 
the castings cool down and molds are heated up gradually. The 
cooling and heating curves of some points evenly distributed 
in the casting, the mold or chill are plotted in Fig. 6(h). The 
predicted and simulated results concluding the distribution and 
the curves are in good agreement. Although the accuracy for 
the continuously predicted results is only 69.1%. The accuracy 
variation with time steps is shown in Fig. 7. It can be seen 
the accuracy of all components including casting, chill and 
mold declines with the increasing of time steps: for the first 

two steps the accuracy is higher than 90%, while it decreases 
rapidly to 50% at the final step (60 min). Thus, their average 
accuracy is 69.1%. However, the accuracy of the predicted 
temperature field of the casting roughly increases with time, 
reaching 91.9% at 30 min, and 87.6% at 50 min. Thus, the 
discrepancy lies mainly in chill and mold.

6 Discussion
6.1 Effect of inputs 
The accuracies of Schemes 1 and 2 are different, as the first 
one takes the geometry model as input, while the later one 
takes the initial temperature as input. The former one illustrates 
higher accuracy. In the geometry model, the three components 
of different materials, casting, mold, and chill can be clearly 
identified, while in the initial temperature field, chills are not 
identified because they take the same temperature as the mold. 
Thus, the identification of each component in different colors 
in the input images is more important.

6.2 Error caused by the discrepancy of Ti and 
Ti+1

For Schemes 1 and 2, the accuracy roughly decreases for 
longer time prediction, as shown in Figs. 8 and 9. However, 
for Scheme 3, the prediction accuracy from true Ti to Ti+1 
roughly increases with longer time prediction, which is higher 
than that of Schemes 1 and 2. The reason is that for Schemes 1
and 2, regardless of T0 or geometry to the Ti, as i increases, 

Table 4: Scheme of training and prediction accuracy

 Scheme

Training

Input → output

Inferring

Conditioned 
input Output Set size

Number of 
diffusion 
models

Time Loss Accuracy
(%)

Time for a 
case (s)

Set 
size

Scheme 1 Geometry Ti 302 6 12 h 
24 min Geometry →Ti 5.4245 90.33 55 8

Scheme 2 T0 Ti 302 6 11 h 
46 min T0→Ti 10.3099 77.51 53 8

Scheme 3 Ti Ti+1 1,806 1 6 h
42 min

Ti →Ti+1 3.0256 97.68 52 200

T0 →T1→…Ti→
Ti+1→…

7.1777 69.13 52 10
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Fig. 5: Comparison between simulated and predicted temperature fields for different geometrical models 
(isolated prediction by Scheme 3)
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Fig. 6: Recurrently predicted results of an example and their comparison with simulated results

(h) Comparison of temperature vs time curves of casting, mold and chill with locations at the grid nodes in Fig. 6(b) 
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Fig. 7: Accuracy decreases with time steps for the 
continuous prediction by Scheme 3

Fig. 8: Accuracy of temperature prediction for different time steps of different models Schemes 1 (a) and 2 (b) 

(a) (b)

Fig. 9: Comparison of the error for the isolated predicted results by Scheme 3 for the same geometry, big error only 
occurs for the first step: (a) prediction of T1 from the initial temperature; (b) prediction of T5 from true T4

(a)

(b)

6.3 Error at sharp corners
The results with a big error of some typical geometries are 
shown in Fig. 10. It can be seen that the error mainly focuses 
on the top of riser, sharp corners of castings, and chills. Sharper 
corners are hard to describe correctly because the resolution of 
the geometry image is only 128×128, thus the relationship of 
the sharp corner pixels can’t be sufficiently represented. 

Chills affect the results because their geometry features 
are not clearly demonstrated in the input in Scheme 3. In the 
diffusion model, either geometry or initial temperature is 
used which means the absence of the initial temperature or 
geometry, so the chills information is missing. In future, it is 

necessary to consider two or more conditions to include both 
geometry and initial temperature features.

The significant error occurs at the top of riser as the riser 
spans the whole width of the domain in Fig. 10(g) perhaps 
because of the lack of these cases in the training set. No more 
cases are found as the width of the riser top is less than that of 
the domain.

6.4 Error at sand mold and chill
The accuracy decrease of Scheme 3 with continuous prediction 
was checked and the temperature error is shown in Fig. 11. It can 
be seen the temperature error of castings shows no significant 

the time difference between the input and Ti increases, and the 
temperature difference between the input and output covers a 
bigger and bigger time span. However, for Scheme 3, the time 
difference between the input Ti and output Ti+1 is always one step. 

The isolated predicted results at different time steps of the 
same geometry exhibit significant accuracy differences in 
Scheme 3, as shown in Fig. 9. There is significant error around 
the area with chills from T0 to T1, but the error is very small 
from T4 to T5. This means the prediction by diffusion model is 
independent from the previous steps, which is different from 
the successive calculation from the initial temperature field in 
numerical simulation.
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Fig. 10: Error occurs mainly around the top of the riser, sharp corners and chills for the predicted results by Scheme 3

(e)

(f)

(g)

(a)

(b)

(c)

(d)
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Fig. 11: Temperature error of recurrently predicted results at different time instants for Scheme 3

jump, while, that of sand molds increases after 20 min in some 
areas, which leads to the decrease of the whole accuracy. This 
complies with the accuracy curves of Fig. 7. It is reasonable that 
there is error accumulation during continuous predictions. But 
the different error accumulations of the casting and mold are at 
different degrees because the prediction by diffusion model is 
based on the addition of noise on each image pixel separately 
instead of the casting/mold border heat transfer in numerical 
simulation. Thus, the prediction of casting and mold are 
independent to some extent in the diffusion model. However, it 
is not clear why the error of mold increases significantly with 
error accumulation.

6.5 Selection of FDM or FEM
The method takes images of geometry and temperature field 
as input, so, it is actually independent of the simulated results 
by FDM or finite element method (FEM). As the training set 
of castings is transferred into images, it can be accepted by 
the AI model. But for the details of fine area, the numerically 
simulated results by FEM will be better for training. In this 
study, FDM is selected because it is easy for the development 
and the direct conversion of pixels and meshes, one pixel is 
corresponding to a mesh, verse versa. For FDM in this study, 
the input is images of shapes instead of mesh data.

7 Conclusions
Several conditioned diffusion models were established as a 
surrogate for the numerical simulation of the casting process. 
A set with more than 302 different casting shapes was 
constructed for the training, validation and prediction. The 
condition can be the geometry model or the initial temperature 
field T0, and the input is a random sample of normal 
distribution. The prediction results of these diffusion models 
were obtained and compared, and the comparison between the 
predicted results and the simulated results was also conducted. 

(1) The diffusion model takes the input of pairs of temperature 
field Ti as input and Ti+1 as label owns the highest accuracy 
reaching 97.7% (as the temperature error of each pixel is less 
than 10 °C) for the isolated prediction of a single step. The 

continuous prediction of temperature fields just based on T0 
is realized by the serial inputs of the outputs of previous steps 
and the accuracy is 69.1%, but the error actually occurs in the 
sand mold, no significant error increases for the temperature 
field of the castings. 

(2) The accuracy of taking the geometry shapes as condition 
to predict the temperature fields at different time steps reaches 
90.3%, while the accuracy of taking the initial temperature T0 

as condition is 77.5%. When taking the temperature fields at 
Ti (i in the range of 0-5) as the conditions, the increase of the 
accuracy to 97.7% for isolated prediction is because of the 
training set is expanded by 6 times and the time difference is 
limited to 1. 

(3) The predicted temperature field results by diffusion model 
is independent from the previous steps, which is different from 
the successive calculation from the initial temperature field in 
numerical simulation. Furthermore, the predicted results for 
the casting are independent from that of chill or mold to some 
extent, which means the big error of a component doesn’t 
affect a better predicted result of other components in the 
geometry model.

(4) The treatment of two or more conditions such as 
geometry, initial condition, thermal properties and boundary 
conditions needs further study in the construction of diffusion 
model. The diffusion model is of the potential as a surrogate 
model for the numerical simulation of casting process. The 
application of the trained model in equipment for online 
simulation and decision making will facilitate the development 
of intelligent equipment and then intelligent manufacturing.
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