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1 Introduction
Austenitic high-manganese steel (≥15wt.% Mn) has a 
good combination of high strength and high ductility 
due to its capability of obtaining single austenitic 
structure through solid solution. Therefore, the austenitic 
high-manganese steel has attracted much attention 
in many structural applications exposed to heavy 
loads, such as the shovel tooth of an excavator, the 
rolling mortar wall of a cone crusher and the lining 
plate of a ball mill [1-6]. However, the application of 
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TiN/γ-Fe interface orientation relationship and 
formation mechanism of TiN precipitates in 
Mn18Cr2 steel

austenitic high-manganese steels is limited due to 
their low yield strength compared to other structural 
materials. Therefore, many investigations have been 
performed to improve the yield strength of austenitic 
high-manganese steels by the method of micro-
alloying, adding RE modifier or ceramic particles 
via the strengthening mechanisms of solid solution 
strengthening, precipitation strengthening, and grain 
refinement [7-12]. 

Among the various strengthening methods, the 
dispersive precipitation of the ceramic particle TiN in 
austenitic high-manganese steels has attracted much 
attention [13-14], because the fine ceramic particle TiN 
could not only hinder the dislocation propagation, 
but can also act as the heterogeneous site and refine 
the solidified microstructure, which is beneficial for 
improving the yield strength of the austenitic high-
manganese steels. However, few studies can be found 
focusing on the morphology, interface orientation 
relationships and formation mechanisms of TiN 
precipitates in austenitic high-manganese steels, which 
prevents the microstructure control and performance 
optimization of austenitic high-manganese steels 
containing TiN precipitates. 
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Fig. 1: SEM morphology of TiN precipitate distributed within the grain (a) and at grain boundary (b) of γ-Fe

In the present study, a Mn18Cr2 steel containing TiN 
precipitates was fabricated. The morphology of TiN precipitates 
and the TiN/austenite interface orientation relationship were 
characterized by means of SEM, TEM and SAED, and the 
formation mechanism of TiN precipitates in Mn18Cr2 steel was 
also investigated.

2 Experimental method 
Table 1 shows the nominal chemical composition of the 
experimental alloy in the present work. The Mn18Cr2 steel 
was firstly melted in a vacuum induction furnace at 1,883 K for 
about 30 min, and then poured into magnesia sand molds with 
the dimensions of 150 mm height and 70 mm inner diameter. 

Then, the cast ingot was heated at 1,353 K for 2 h and water 
quenched for austenizing. 

SEM samples with the dimensions of 10 mm × 10 mm × 
10 mm and TEM samples with the dimensions of 10 mm × 
10 mm × 0.3 mm were cut from the Mn18Cr2 steel blocks. 
The SEM samples were first ground successively with 400, 
800, 1000 and 2000 grade SiC papers and then carefully 
polished with 2.5, 1.5 and 0.5 μm polishing pastes. The SEM 
observations were performed on the JSM-5610LV scanning 
electron microscopy. The TEM samples were mechanically 
polished to 50-60 μm thick, and then were ion milled 
by Gatan-691 to obtain a large thin area. Then, the TEM 
investigations were carried out on the JEM-2100 transmission 
electron microscope.

Table 1: Chemical compositions of Mn18Cr2 steel (wt.%)

C Mn Cr Ti N S P Fe

1.30 18.20 2.10 0.25 0.25 0.056 0.040 Bal.

3 Results and discussion
3.1 Morphology of TiN precipitates
Figure 1 shows the SEM morphology of TiN precipitates. It 
can be seen that the TiN precipitates form both within the grain 
and at the grain boundary of γ-Fe, and exhibit a cubic-shaped 
morphology. As a general rule, the close-packed plane {111} 
of FCC crystal has the lowest energy, and thus the morphology 
of FCC crystal during the solidification should be octahedral. 

However, the TiN precipitates in the present work exhibit 
cubic morphology, which indicates that the surfaces of TiN 
precipitates are more likely to be the secondary close-packed 
lane {100}. Therefore, it can be inferred that there must be 
some other factors, such as the lattice misfit or the interface 
energy between the TiN precipitate and γ-Fe, affect the growth 
behavior and change the final morphology of TiN precipitates.

(a) (b)

3.2 Crystal orientation relationship between 
TiN and γ-Fe

Figure 2(a) shows a typical TEM image of the TiN/γ-Fe 
interface. It can be seen that the interface between TiN and γ-Fe 
is clean and flat. Figure 2(b) shows the SAED pattern from the 
TiN/γ-Fe interface. As shown in Fig. 2(b), the incident beam is 
parallel to [011]TiN and [112]γ-Fe, and the (200) plane of TiN is 
parallel to the (111) plane of γ-Fe. Thus, the crystal orientation 

relationship between TiN and γ-Fe is determined as follows:

In order to depict the high symmetry elements along the [011]TiN

//[112]γ-Fe, as shown in Fig. 2(c), stereographic projections 
of plane indexes of TiN and γ-Fe along the [011]TiN//[112]γ-Fe 
were superimposed according to the above crystal orientation 
relationship. Except for the above mentioned (100)TiN//(111)γ-Fe, 

(100)TiN//(111) γ-Fe , [011]TiN//[112]γ-Fe
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Fig. 2: TEM morphology of TiN/γ-Fe interface (a); SEAD from TiN/γ-Fe interface (b); stereographic projection 
showing orientation relationship along [011]TiN//[112]γ-Fe  (c)

(011)TiN // (110) γ-Fe

(211)TiN // (110) γ-Fe

(111 )TiN // (121) γ-Fe

(a) (b)

(c)

3.3 Growth mechanisms of TiN precipitates
It is well known that when a new phase tends to precipitate 
from the matrix, it preferentially nucleates at the close-packed 
planes of the matrix in order to minimize the interface energy 
between the precipitate and matrix. In this case, the lattice 
misfit along the precipitate/matrix interface has a decisive 
effect on the precipitate nucleation and growth behavior, 
because the driving force for the nucleation and growth of 
an precipitate increases monotonically with the increase of 

the lattice misfit between the matrix and the precipitate [15]. 
Thus, the interfacial misfit between the close-packed plane 
(111) of γ-Fe and three TiN surfaces, i.e., TiN(111), TiN(100) 
and TiN(110), was calculated. Figure 3 shows the crystal 
and surface atomic structures for the γ-Fe and TiN, and the 
summary of the calculated interfacial misfit between γ-Fe and 
TiN is shown in Table 2. It could be clearly seen from Table 2 
that when the interfacial orientation relationship is γ-Fe(111)//
TiN(100) and γ-Fe[112]//TiN[011], the interfacial misfit is the 
smallest. This indicated that the secondary close-packed lane 
{100} of TiN has the best matching relationship with the close-
packed plane {111} of γ-Fe, and thus the secondary close-
packed plane {100} of TiN would preferentially combine with 
the close-packed plane {111} of γ-Fe during the precipitation 
in order to minimize the interface energy. The TiN precipitates 
exhibit cubic appearance due to the fact that the TiN has a 
FCC structure with rock salt type structure.

the following crystal orientation relationships also exist:
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Fig. 3: Crystal and surface atomic structures of γ-Fe (a-b) and TiN (c-f)

(a) (b) (c)

(d) (e) (f)

Table 2: Calculated interfacial misfit between γ-Fe and TiN

4 Conclusions
In this work, a Mn18Cr2 steel containing TiN precipitates was 
fabricated by vacuum induction melting. The morphology of 
TiN precipitates, TiN/γ-Fe interface orientation relationship 
and the formation mechanism of TiN precipitates were 
investigated. The following conclusions can be obtained:

(1) The TiN precipitates can form both within the grain and 
at the grain boundary of γ-Fe, and the TiN precipitates exhibit 
a cubic-shaped morphology. 

(2) The interface orientation relationship between TiN and 
γ-Fe can be determined as follows: (100)TiN // (111) γ-Fe, [011]TiN // 
[112]γ-Fe. 

(3) Because of the smallest interfacial misfit, the secondary 
close-packed plane {100} of TiN preferentially combines with 
the close-packed plane {111} of γ-Fe during the precipitation 

in order to minimize the interface energy. The TiN precipitates 
exhibit cubic appearance due to the fact that the TiN has a 
FCC structure with rock salt type structure. 
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