Al-Si-Mg 系铸造合金应用现状与 高强韧制备研究进展

胡惠翔¹,樊振中^{2,3},罗婷瑞¹,张 詰⁴,田艳中¹

(1.东北大学材料科学与工程学院,辽宁沈阳 110819;2.中国航发北京航空材料研究院,北京 100095;3.北京市先进铝合金材料及应用工程技术研究中心,北京 100095;4.天津大学化工学院,天津 300350)

摘要: 概述了Al-Si-Mg系铸造合金的应用现状与高强韧制备研究进展,系统总结了Al-Si-Mg 系铸造合金晶粒细化、硅相变质、精密热处理、成分设计与成形-成性工艺装备的研究进展, 归纳了各制备工艺对材料微观组织与力学性能的影响,总结了Al-Si-Mg系铸造合金高强韧制 备的力学性能成果。最后,对其材料成分设计、凝固组织细晶化制备、计算机辅助工程开发 与高强韧精密热处理工艺发展进行了技术展望。

关键词:Al-Si-Mg系铸造合金;应用现状;微观组织;力学性能;晶粒细化;硅相变质;高 强韧

1 应用与研究现状

1.1 应用现状

作为一种轻质金属结构材料,铝合金具有密度低、耐蚀性佳、比强度高、成形 工艺优良等特点,被广泛用于飞机、运载火箭、新能源汽车、船舶、化工等装备制 造领域^[1-2]。与镁合金相比,铝合金耐蚀性佳,可实现长寿命低成本使用及储存维 护,且制造技术成熟;与碳/碳等复合材料相比,其制造工艺灵活、制造周期短、生 产成本低,可采用锻造、铸造、焊接与增材制造等工艺实现复杂结构一体化设计与 制造。与锻造成形、增材制造等工艺相比,铸造成形占比超过65%;其中铝硅合金尤 其是亚共晶铸造铝硅合金为铸造铝合金中用量最大的合金^[3-4]。

铸造铝合金主要分为Al-Cu、Al-Si、Al-Mg和Al-Zn四个系列,Al-Cu系铸造合金 具有较好的耐热性能与力学性能,但其铸造工艺较差,在铸造成形时易产生热裂、 疏松和偏析冶金缺陷;Al-Mg系铸造合金耐蚀性佳,适合制备复杂海洋环境下使用 的制件,但其屈服强度较低,不能在中强和高强服役载荷下使用;Al-Zn系铸造合金 密度高,可通过热处理实现轻质高强韧合金的制备,多用于非承载简单结构制件的 铸造成形,适用范围较小;Al-Si系铸造铝合金易熔炼易浇注,结合T5/T6热处理可 获得较佳的综合力学性能,可承载中高强度服役载荷,被广泛用于制造导弹壳体、 飞机舱门、箭载仪表器材、汽车轮毂、新能源汽车副车架、高铁齿轮箱等^[4-5]。Al-Si 铸造合金主要包括ZL101、ZL101A、ZL102、ZL104、ZL105、ZL105A、ZL114A、 ZL116等。其中ZL101A和ZL114A是铝硅合金中较为成熟的牌号,两者的主要区别在 于ZL114A中的Mg元素含量较高。综上,开展Al-Si-Mg铸造铝硅合金的应用研究,可 为实现复杂结构部件的轻量化、强韧化制备提供材料支撑与技术支持,具有重要的 意义^[6]。

1.2 研究现状

1.2.1 细化剂对晶粒细化的作用

晶粒细化可同时提高合金的强度与塑韧性,在实际生产中常用添加化学细化剂

作者简介: 胡惠翔(1997-),女,硕 士生,研究方向为高强韧 铝合金设计与制备。E-mail: 1304279774@qq.com 通讯作者: 田艳中,男,教授。E-mail: tianyanzhong@mail.neu.edu. cn

中图分类号:TG146.21 文献标识码:A 文章编号:1001-4977(2023) 10-1227-08

收稿日期: 2022-11-29 收到初稿, 2023-02-13 收到修订稿。

1228 1

的方法进行细晶处理^[7]。自20世纪40年代起,晶粒细 化剂在铝合金制造行业中不断发展,见图1^[8]。铝合金 熔体凝固过程伴随着α-AI相的形核与长大,晶粒细化 剂在形核阶段可为熔体提供大量非均匀形核质点,同 时细化剂元素可形成成分过冷,实现非均匀凝固;在 长大阶段,细化元素(或不溶性粒子)会在晶粒之间 聚集,进而限制晶粒的生长,实现晶粒细化。常规细 化剂具有利用率低、易聚集沉淀、细化效果受限等不 足,为了获得较佳的晶粒细化制备效果,很多学者深 入研究了Ti、Zr、B等元素的细化机理,并提出了相 应的晶粒细化观点及理论,其中具有代表性的包括碳 化物-硼化物理论、包晶反应理论与双重形核理论等,

Fig. 1 Development of refinement agent types

但迄今尚未有统一的理论可用于阐释所有的晶粒细化 机理^[9-11]。目前,通过改进细化剂元素配比所制备的新 型细化剂正成为国内外研究学者的研究热点。Zhang 等人研究发现,相比于传统商业细化剂Al-3Ti-B和Al-5Ti-B,根据V:B=1:2原子比制备的新型Al-3V-1.28B 细化剂对亚共晶Al-7%Si合金具有更优异的细化效 果^[12]。由于国内对晶粒细化剂的研究起步较晚,部分 细化剂的细化效果与国外同类产品存在一定差距,且 对细化剂制备过程的热力学研究还较为缺乏。Al-Ti、 Al-Ti-B、Al-Ti-C、Al-B是工业生产常用的晶粒细化 剂,其中尤以Al-Ti-B的应用最为广泛^[13-14]。

(1) Al-Ti细化剂。Ti元素晶粒细化剂最早采用 含Ti的无机盐类与Al熔体反应生成Al₃Ti粒子进而细化 α-Al基体,但细化效果较差,无法有效预测晶粒细化 程度,且Ti元素回收难度大,因此逐渐被淘汰。到20 世纪60年代,随着制备工艺的不断发展,出现了对纯 铝细化效果较佳的Al-Ti类中间合金,包括Al-5Ti、Al-6Ti、Al-10Ti等中间合金,但其对Al-Si系铸造合金细化 效果较差。

(2)Al-Ti-B细化剂。自20世纪60年代,Al-Ti-B 合金一直是铝合金优先采用的细化剂之一,包括Al-5Ti-B、Al-3Ti-3B、Al-3Ti-4B等。然而Al-Ti-B合金的 细化行为容易受到TiB₂颗粒分布、合金成分等因素的影 响,特别是当Si含量较高时(>7.0%),易在形核质点 上形成富钛硅化物,会削弱Al-5Ti-1B细化能力并发生 明显的晶粒粗化现象,此现象为Si毒化^[15-16]。对于工业 纯铝,Al-5Ti-B中间合金细化效果优于Al-3Ti-B中间合 金,对于Al-Si铸造合金,Al-3Ti-B中间合金细化效果 优于Al-5Ti-B中间合金^[17]。当铝熔体中含有Zr、Cr、 V、Mn元素时,TiB₂粒子因"中毒"而削弱细化效 果,并且这种结果不可逆^[16,18]。因此"毒化"效应严 重制约了Al-Ti-B中间合金的细化效率。 (3) Al-Ti-C细化剂。由Al-Ti-C合金带入熔体的 TiC粒子不易团聚沉淀,可作为α-Al的有效异质形核质 点,提高形核率^[19]。相比于Al-Ti-B,Al-Ti-C细化剂不 会产生"Si毒化",并对含Zr、Cr元素铝合金仍具有较 佳的细化效果。但C与Al熔体润湿性较差,导致TiC颗 粒在熔体中不够稳定。20世纪90年代后,Al-Ti-C-B、 Al-Ti-B-RE、Al-Ti-C-RE等新型细化剂逐渐被开发,其 中Al-Ti-C-RE合金可提高C与Al熔体界面的润湿性,使 TiC粒子悬浮性得到明显改善。Li研究指出Al-5Ti-0.8B-0.2C细化剂具有比Al-5Ti-B更佳的晶粒细化效 果,添加0.2%的Al-5Ti-0.8B-0.2C细化剂,可将铸态纯 铝晶粒尺寸细化至190 μm以下,细化作用持续时间不 低于1 h;与Al-Ti-B类中间合金相比,C元素的加入降 低了合金熔体中TiB₂的偏析程度^[20]。

(4)Al-B细化剂。与Al-5Ti和Al-5Ti-B中间合金 相比,Al-4B对A356合金的晶粒细化效果更为显著。 Birol指出Al-B中间合金的有效形核质点为AlB₂相;Kori 发现对Al-Si铸造合金而言,Al-B中间合金比Al-Ti中 间合金晶粒细化效果更佳,当B元素添加量≥3%时, AlB₂颗粒尺寸随B元素添加量的增加而持续增大,合金 熔体中有效形核质点数量大幅减少^[21-22]。

1.2.2 硅相变质研究现状

未经变质的共晶硅尖端处存在应力集中,严重割 裂基体,恶化合金力学性能。共晶硅变质的方法有物 理变质、化学变质以及快速凝固,本文所介绍的硅相 变质方法主要指化学变质。化学变质是指通过添加微 量化学元素达到改善共晶硅组织形貌的目的。国内目 前主要选用Na、Sr元素及其盐类进行硅相变质,但对 其最佳添加量的认识尚未统一。Na盐变质剂成本低、 潜伏期短,对冷却速度不敏感,且硅相变质效果较 佳。但Na盐类变质剂在熔体中挥发性大,易烧损,添

专题综述 FOUNDRY 存估 1229

加后气体含量高易出现疏松、缩孔缺陷,且对砂型铸造有效变质时间短(<1 h)。继Na盐变质剂之后,研究人员开发了一种长效Sr变质剂。与Na变质相比,Sr变质效果稳定,有效变质时间长,通常以Al-Sr中间合金的形式进行添加。Sr变质添加后,合金熔体中的[H]离子含量显著增加,易产生针孔缺陷,降低合金材料的力学性能,因此Sr变质剂通常与惰性气体(氩气、氦气等)和氮气复合使用^[23]。

稀土元素对Al-Si铸造合金也具有良好的硅相变质 效果,且有效变质作用时间可达5~7 h,稀土元素主要 包括La、Sb、Ce、Nd、Sc、Y等。其中Sb元素因成本 低、析氢倾向小、有效作用时间长、硅相变质效果显 著而被广泛选用^[24-25]。亚共晶Al-Si铸造合金添加Sb元 素后,生成的AlSb相不断填充至Si相生长界面,可抑 制Si相长大,细化Si相组织^[26]。Li等人得出结论,Y可 将共晶硅从粗大的片状和针状形貌转变为细枝状与均 匀分布的纤维状形貌。当添加0.3% Y经T6热处理后,

合金的抗拉强度、屈服强度与伸长率分别为353 MPa、287 MPa和12.1%^[27]。刘文祎研究发现,添加Gd元素后,熔体成分过冷程度大幅增加,合金熔体中形成大量纳米相,可阻碍共晶硅相的一维快速生长;与不添加Gd元素相比,添加0.5%Gd元素后,A357合金T6态抗拉强度提高了37 MPa,图2所示为不同Gd元素添加量下A357铝合金共晶硅相形貌^[28]。Jiang等人研究发现,

加入稀土元素可大幅降低α-AI初生相和共晶硅相的颗 粒尺寸及二次枝晶臂间距(SDAS)^[29]。随着对材料使 役性能要求的提升及铸造环保标准要求的提高,采用 单一的变质元素已很难达到理想的变质效果。研究表 明,Sr元素与稀土元素复合变质可克服单独添加稀土元 素作变质剂时用量大的缺点,Na与Sr、Sb、Te,RE与 Sr的变质作用可相互叠加,而Sb、Te与Na、P之间的变 质效果会互相抵消和削弱^[30-31]。杨启杰采用Na-Ba复合 变质剂对ZL101合金进行变质处理,发现保温4.5 h后仍 具有较佳的变质效果,且复合变质剂多次重熔使用仍 具有较好的硅相变质效果^[32]。Zhu团队发现,Na+Sr复 合变质呈现出的变质效果远优于单一变质效果,且显 著缩短了单一使用Sr变质元素的潜伏期^[33]。Xu研究指 出选用Sc、Zr复合变质处理时,随着Zr元素添加含量的 增加,铸态微观组织细化程度先增强后下降,当Sc、 Zr元素添加含量分别为0.3%与0.2%时,A357铝合金T6 态抗拉强度、屈服强度与伸长率可达379 MPa、329 MPa 与6.1%,不同Sc元素添加含量下A357铝合金铸态组织 形貌SEM测试结果见图3^[34]。相比于国外,国内稀土变 质铸造铝硅合金的商业化种类较少、产品较为单一。

1.2.3 T5/T6热处理研究现状

T5/T6热处理工艺作为提高合金材料强度与塑韧性 的有效手段之一,得到了诸多研究者的重视。固溶保 温处理可在改善共晶硅相形貌的同时,促进Mg元素充 分溶入α-AI基体,提高过饱和固溶度,为时效保温过 程Mg₂Si的大量析出提供成分驱动。研究表明,当Al-Si 铸造合金中Mg元素添加量≤0.5%时, Mg₂Si相经550 ℃ 固溶保温2 h即可实现充分的溶解与均匀化,适当延长 固溶保温时间与提高固溶保温温度,共晶硅相球化速 度大幅增加,硅相形貌显著改善,但应避免出现固溶 保温过烧;铸造组织中的非金属夹杂与针孔、气孔等 缺陷降低了溶质原子的扩散速率,固溶保温时间过短 时,强化元素不能充分溶入 α -Al基体^[35, 36]。Pramod研 究指出A356铝合金添加Sc元素并经T6热处理后, 共晶硅相明显细化,形貌显著改善,力学性能得 到提升^[37]。Sersour研究了T5/T6热处理工艺对B413、 AS10G与A356三种Al-Si铸造合金力学性能的影响,指 出T5热处理可以获得更佳的综合力学性能^[38]。樊振中 研究指出ZL114A合金添加0.12%Sb元素结合分级固溶 热处理,合金伸长率与抗拉强度可达9.6%与356 MPa^[39]。 综上,国内外研究学者对Al-Si-Mg铸造铝硅合金T5/T6 热处理强化机理、微观组织演变规律、强化相析出次 序及热处理工艺参数优化做了大量的工作,同时结合 相图软件计算凝固组元,建立了Mg₂Si强化相的析出数 学模型,用于指导工业生产。

(c) 1%Gd

(a) 不含Gd (b) 0.5%Gd 图2 不同Gd元素含量A357铝合金的共晶硅形貌 Fig. 2 Eutectic silicon morphologies of the A357 aluminum alloys with different Gd contents

图3 不同Zr和Sc元素添加含量下A357铝合金力学性能与共晶硅相形貌^[34] Fig. 3 Mechanical properties and eutectic silicon morphologies of the A357 aluminum alloys with different Zr and Sc contents

2 强韧化的制备

2.1 合金元素在铸造铝硅合金中的作用

2.1.1 Si元素

Si元素是Al-Si-Mg铸造合金的主要成分之一,可以 提高合金铸造性能,改善流动性能,降低热裂倾向, 减少缩松、缩孔倾向,提高气密性。随着Si元素添加量 的增加,凝固组织中的SDAS明显减小,第二相数量不 断增多,铸态强度有所增加;但当Si元素添加含量超出 共晶点时(12.6%),凝固组织易产生粗大块状Si相, 承载时易产生应力集中,合金的材料强度与塑韧性随 之降低。

2.1.2 Mg元素

当Al-Si-Mg铸造合金中Si元素含量固定时,Mg 元素含量的增加可显著提高材料强度,但使伸长率下 降。对于A356铝合金,Mg元素含量每增加0.01%,材 料强度可提升6.89 MPa。由Al-Mg二元相图可知,室 温下Mg元素在α-Al基体中的最大固溶度为0.6%,Mg 元素添加过高时,在铸态组织中易形成粗大Mg₂Si脆性 相,降低材料的强度与塑韧性,因此添加适宜的Mg元 素可在保持材料伸长率的前提下,有效提高材料的强 度。樊振中研究指出,相比于Si、Fe、Ti等添加元素, Mg元素含量对凝固组织SDAS影响最为显著,相图计 算结果表明,当Al-Si-Mg合金的SDAS由200 μm降至 20 μm时,材料抗拉强度可提高164 MPa^[40]。

2.1.3 其他微量元素

除添加晶粒细化与共晶硅相变质元素外,还可添 加其他微量合金元素,通过微合金化法提高Al-Si-Mg 铸造合金的综合力学性能,常添加的微量合金元素主 要包括Be、Mn、Sc、Zr与Cr等。Be元素的添加可在 降低Mg元素烧损的同时,改善富Fe相形貌,由长条状 转变为短棒状,提高合金材料强度与伸长率,细化铸 态晶粒尺寸,降低热裂倾向;但Be元素具有较高的毒 性,近年来使用量逐年减少。Tzeng研究发现,A357 合金添加0.05%Be与0.05%Sc元素后,质量指数分别提 高11%、17%,断裂韧性缺口屈服比分别增加4.5%与 9.0%^[41]。Mn元素添加后可形成Al₆Mn弥散质点,提高 材料再结晶温度,与熔体中的Fe反应生成Al₃FeMn化 合物,降低Fe元素对力学性能的恶化影响,提高合金 的耐蚀性能。与Mn元素作用类似,添加Cr元素后可在 Al-Si-Mg合金中形成(Cr, Fe)Si₄Al₁₃团状化合物,降 低Fe元素的毒害作用,改善合金的高温力学性能。部 分研究者发现,在Al-Si-Mg系铸造合金中添加适当的 $Cr后, 不仅能够消除 \beta$ -Fe有害相, 而且通过热处理可 析出含Cr的纳米强化相,从而提高合金的力学性能^[42-43]。 Sc、Zr、Ti和B元素添加后可显著细化铸态晶粒尺寸, Al₃Sc、Al₃Zr、Al₃Ti与TiB₂均可作为有效的形核质点, 提高α-Al基体的形核率^[44-45]。但Ti、B元素添加含量

过高时易出现Si毒化现象,Ti元素添加量一般控制在 0.05%~0.2%。P元素对初生硅具有良好的变质作用,主 要添加在过共晶Al-Si合金中。在金属型铸造中用于改 善脱模性能时一般添加Fe元素,砂型铸造与熔模精密 铸造时需严格控制Fe元素的含量^[46-47]。

2.2 铸造铝硅合金物理细化方法

铝硅合金晶粒细化的物理方法主要包括凝固过 程中物理细化和形变处理细化,具体包括快速凝固、 凝固时振动搅拌、超声波处理、电磁场处理及大塑性 变形(SPD)等。快速凝固可在极高的凝固速度下获 得均匀细小的等轴晶组织。凝固振动搅拌主要是通过 提高形核率来细化改善铸态组织。Limmaneevichitr与 Taghavi研究发现,A356合金在50 Hz频率下持续振动 15 min后, 晶粒尺寸由1 200 μm降至174 μm, 随着振动 频率与振幅的增加,铸态晶粒尺寸与SDAS大幅降 低^[48-49]。Haghayeghi研究了振动频率对铸态合金微观组 织细化效果的影响,在10 kHz、14 kHz振动频率下, 铸态合金微观组织未发生明显变化,当振动频率增至 17.5 kHz与20 kHz时, 晶粒尺寸由118 μm降至68 μm与 60 um^[50]。熔体超声处理是当前材料工程领域的研究热 点,通过对液态金属施加超声波来调控熔体的流动与 凝固过程,从而改善疏松、偏析等缺陷,实现晶粒细 化、熔体除气的工艺效果。Jian研究发现A356合金在 凝固过程中,经20 kHz超声处理,共晶硅形貌由粗大 针片状转变为细散玫瑰花状,共晶硅的长度从26 µm 减小到2 μm^[51]。Abramov等人研究表明,超声波的非 线性效应使硅相尺寸更加细小,硅相分布更加均匀。 超声处理后,Al-12Si和Al-7Si合金硅相形状都得到了 明显的球化^[52]。电磁场处理是指在外加直流磁场、交 变磁场或者脉冲磁场作用下实现对材料组织和性能的 改善^[53]。Zhang研究得出,施加低频电磁场改善了铝合 金半连续铸造过程中的宏观物理场,使连铸坯的组织 得到了显著细化,消除了连铸坯中的裂纹^[54]。班春燕 等人得出结论,在LY12铝合金凝固过程中施加脉冲电 流或脉冲磁场均可实现晶粒细化、等轴化,当电容 器电容为80 µF,放电电压为5 kV时,细化效果最显 著^[55]。SPD是有效的金属材料晶粒细化技术,主要包 括等径角挤压(ECAP)、高压扭转(HPT)、累积叠 轧(ARB)、循环挤压-压缩(CEC)、搅拌摩擦加工 (FSW)与多向锻造(MDF)等,SPD晶粒细化制备 工艺可获得超细晶与纳米晶结构金属材料,目前对SPD 开展的研究多集中于理论研究阶段,尚未有较成熟的 工业化生产推广应用。A356合金经过固溶与HPT变形 后,析出大量纳米级Si沉淀,位错密度大幅增加,屈服

强度达440 MPa, 伸长率≥8.8%^[56]。

专题综述 FOUNDRY **结**估 1231

2.3 铸造成形一体化制备

相比于传统的砂型铸造、金属型铸造导热强、 冷速快,所以铸件组织致密、质量稳定且生产率高。 然而金属型模具导热系数大,本身无透气性,铸件 易产生浇不足、气孔、裂纹甚至变形等缺陷,因此合 理设计浇注系统尤为关键。为方便脱模,金属型铸造 多用于制造批量生产的简单铸件。低压铸造是介于重 力铸造和高压铸造之间的一种铸造方法,其突出优势 为充型速度可调以及凝固时补缩压力大,因此充型平 稳、铸件质量高、合金液利用率高,多用于制备大型 复杂薄壁结构铸件。由于保压时占据时间过长,导致 生产周期较长(10 min),生产效率不高。压力铸造 (高压)的显著特点是快速充型、高压凝固,是目前 生产效率较高的铸造工艺,所获得的铸件精度和质量 比低压铸造更高。由于其充型速度快,易卷入大量空 气造成铸件中残留细密气泡、缩孔等缺陷,若气泡过 大还将导致铸件不能热处理,甚至报废。目前监测技 术与计算机控制技术在压铸生产中具有较好的应用, 很多工业发达国家生产的压铸机都实现了机床自动 化(CNC),能够检测压力室温度、推杆位移和速 度,并实现铸造过程的伺服控制。虽然我国成形设备 机电一体化越来越快,且开始重视对柔性制造系统 (FMS)的研究,但发展速度相对缓慢,在检测仪 器、控制系统及模具制造等方面还存在关键技术空白^[57]。 为了解决压铸件内部气孔与疏松缺陷,近年来国内外 研究人员提出真空压铸、半固态压铸、挤压铸造和精 密熔模铸造等新的制备工艺。半固态成形技术从20世 纪70年代起,由于其独特的技术优势而备受研究学者 关注。在相当的屈服强度下,半固态加工技术可实现 更高伸长率,缩小了锻造和铸造产品之间力学性能的 差距^[58]。熔模铸造的铸件尺寸精度高,可达CT4-6,广 泛应用在汽轮机、泵的叶片、复杂仪器元构件、切削 刀具以及各种兵器等零件的生产。该工艺适用于多种 合金材料,生产灵活性高,但存在工序较多,生产周 期长的问题。

2.4 精密热处理强韧化调控

传统的热处理工艺不仅能耗和成本高,而且对力 学性能的改善没有新的突破。因此如何在保证性能优 异的同时缩短热处理周期成为研究者们迫切关注的问 题。近年来,研究人员开发了多种时效热处理工艺, 如双级时效、多步时效、峰值时效、压缩载荷时效 与分步时效等。章爱生采用548 ℃×12 h单级固溶与

120 ℃×4 h+175 ℃×5 h双级时效热处理工艺, 使含 钪A357合金材料抗拉强度与伸长率达到了362 MPa与 6%,与传统热处理工艺相比,力学性能提升明显^[59]。 樊振中采用JMat-Pro相图软件在完成Al-Si-Mg合金组元 成分优配后,采用三级固溶与二级时效热处理工艺, 使Al-6.5Si-0.7Mg-0.2Fe-0.2Ti-0.1Zn-0.1Mn-0.1Cu合金抗 拉强度、屈服强度与伸长率分别达到了371 MPa、310 MPa与5.84%^[40]。Menargues等人针对铸造A356和A357 合金,开发了短时T6热处理工艺,该热处理工艺使Mg 完全溶解同时使 α-Al和共晶硅的晶粒生长最小化,显 示出更好的力学性能^[60]。为评估材料强度与塑韧性的 匹配关系, Drouzy在1980年为铸造铝合金A357提出了 质量指标Q(Q=UTS+d×log(EL%),其中d为与材料 相关的常数,Al-Si-Mg合金d值约为150,EL为材料伸 长率)这一概念,作为Al-Si-Mg强韧化综合性能的判 据^[61]。Wang等人对比研究了在铸态与T6态下,添 加不同含量Ce元素所达到的质量指标Q, 铸态下Q值最高达到209.96 MPa,经过(540±5)℃固溶 5.5 h与(165±5)℃时效4 h的短时热处理后实现 了A357合金强度和塑性的良好组合, Q值最高可达 425.74 MPa^[62]

3 发展技术展望

(1)基于材料工艺性能参数测试与物化性能数据 库构建,结合材料相图设计软件调控Al-Si-Mg铸造铝合 金的成分组成,借助共晶硅相尺寸、形貌、分布、数 量的调控,可实现新型低成本高强韧Al-Si-Mg铸造合金 的快速开发与强韧化制备。

(2)环保、高效、低成本和高性能已成为铝合 金晶粒细化制备发展趋势。凝固组织晶粒细化制备发 展方向包括但不限于:大熔体的电磁搅拌(EMS)技 术、高磁场搅拌技术、振动模具设计、耐高温超声波 变幅杆、低能耗和高效率的新一代晶粒细化剂。

(3)加强专用传感器与检测设备研发及伺服控制 技术和其他高新技术的应用,加强压力铸造过程计算 机辅助工程(CAE)软件的开发,提高凝固组织冶金 质量,降低复杂结构模具制造周期及成本,实现凝固 过程可视、可检、可调及可控。

(4)开发短时节能高效先进的热处理技术及工艺 装备,实现热处理生产的自动化与专业化是热处理技 术发展的必然趋势。

参考文献:

- [1] BEHERA R, CHATTERJEE D, SUTRADHAR G. Effect of reinforcement particles on the fluidity and solidification behavior of the stir cast aluminum alloy metal matrix composites [J]. American Journal of Materials Science, 2012, 2 (3): 53-61.
- [2] GEBRIL M A, OMAR M Z, MOHAMED I F, et al. Microstructural evaluation and corrosion resistance of semisolid cast A356 alloy processed by equal channel angular pressing [J]. Metals, 2019, 9 (3): 303.
- [3] 樊振中,袁文全,王端志,等.压铸铝合金研究现状与未来发展趋势[J].铸造,2020,69(2):159-166.
- [4] 隋育栋,王渠东.铸造耐热铝合金在发动机上的应用研究与发展[J].材料导报,2015,29(3):14-19.
- [5] 姜坤,赵凯,林翰,等.高强韧Al-Si-Mg合金材料设计与制备 [J].铸造, 2021, 70(6):681-686.
- [6] 刘闪光, 虞秀勇, 毛郭灵, 等. 钇在亚共晶铝硅合金中的作用研究进展 [J]. 材料导报, 2022, 36(15): 101-107.
- [7] 焦雷,赵玉涛,夏天福,等.铝钛碳、铝钛硼细化剂对铝基体细化效果的评定研究 [J]. 材料导报,2013,27(8):14–17.
- [8] MARJANI O, EMAMY M, POURBAHARI B. Effects of grain refiners and cooling rates on the microstructure and tensile properties of A357 alloy [J]. Metallography, Microstructure, and Analysis, 2021, 10 (5): 579–588.
- [9] 李飞,廖怡君,王旭,等. Zr元素对纯铝细化机理的电子理论研究 [J]. 材料导报,2018,32(18):3190-3194.
- [10] MURTY B S, KORI S A, CHAKRABORTY M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying [J]. International Materials Reviews, 2002, 47 (1): 3–29.
- [11] ZHANG M X, KELLY P M, EASTON M A, et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model [J]. Acta Materialia, 2005, 53 (5) : 1427–1438.
- [12] ZHANG Y H, YE C Y, SHEN Y P, et al. Grain refinement of hypoeutectic Al-7wt.% Si alloy induced by an Al-V-B master alloy [J]. Journal of Alloys and Compounds, 2020, 812: 152022.
- [13] 相志磊,马腾飞,陈子勇,等.铸造铝合金的细化机理 [J].材料导报,2013,27(5):110-114.
- [14] 闫敬明,黎平,左孝青,等.Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J].材料导报,2020,34(9):9152-9157.
- [15] KORI S A, MURTY B S, CHAKRABORTY M. Influence of silicon and magnesium on grain refinement in aluminium alloys [J]. Materials Science and Technology, 1999, 15 (9): 986–992.
- [16] 谭群燕. 铝钛碳晶粒细化剂的制备及工业应用 [J]. 热加工工艺, 2007, 36 (13): 38-40.
- [17] MURTY B S, KORI S A, CHAKRABORTY M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying [J]. International Materials Reviews, 2002, 47 (1): 3–29.

- [18] 丁海民,刘相法,于丽娜. Zr和Mn对Al-Ti-B中间合金的影响 [J]. 特种铸造及有色合金, 2007, 27 (5): 390-392.
- [19] LIANG S M, SCHMID FETZER R. Phosphorus in Al-Si cast alloys: thermodynamic prediction of the AlP and eutectic (Si) solidification sequence validated by microstructure and nucleation undercooling data [J]. Acta Materialia, 2014, 72: 41–56.
- [20] LI PT, MAXG, LIYG, et al. Effects of trace C addition on the microstructure and refining efficiency of Al-Ti-B master alloy [J]. Journal of Alloys and Compounds, 2010, 503 (2): 286–290.
- [21] KORI S A, MURTY B S, CHAKRABORTY M. Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium [J]. Materials Science and Engineering: A, 2000, 283 (1-2) : 94-104.
- [22] BIROL Y. AlB₃ master alloy to grain refine AlSi₁₀Mg and AlSi₁₂Cu aluminium foundry alloys [J]. Journal of alloys and compounds, 2012, 513: 150–153.
- [23] 张佳虹,邢书明. Al-Si合金变质元素及其交互作用 [J]. 材料导报,2018,32(11):1870-1877.
- [24] 胡中潮,于慧,崔元胜,等.Sb、Te变质对ZL101合金组织和性能的影响[J].铸造,2018,67(6):502-506.
- [25] 余聪,陈乐平,周全.稀土元素对铝合金组织与性能影响的研究进展 [J].特种铸造及有色合金,2021,41(2):241-246.
- [26] LIU Q. Effect of antimony on the growth kinetics of high purity Al-Si alloys [J]. Scripta Materialia, 1998, 38 (7): 1083–1089.
- [27] LI B, WANG H, JIE J, et al. Effects of yttrium and heat treatment on the microstructure and tensile properties of Al-7.5 Si-0.5 Mg alloy [J]. Materials & Design, 2011, 32 (3): 1617–1622.
- [28] 刘文祎,徐聪,刘茂文,等. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响 [J]. 材料工程,2019,47 (6): 129-135.
- [29] JIANG W, FAN Z, DAI Y, et al. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy [J]. Materials Science and Engineering: A, 2014, 597: 237–244.
- [30] 张启运,郑朝贵,韩万书.稀土元素对Al-Si共晶合金的变质作用 [J].金属学报,1981,17(2):130-136.
- [31] 潘利文,罗涛,林覃贵,等.稀土铝合金最新研究进展[J].轻合金加工技术,2016,44(9):12-16.
- [32] 杨启杰,苏广才,王文超.改良铸造铝硅合金复合变质处理的研究 [J]. 热加工工艺, 2010, 39(11): 40-43.
- [33] ZHU G L, GU N J, ZHOU B J. Effects of Combining Na and Sr additions on Eutectic Modification in Al-Si alloy [J]. IOP Conference Series: Materials Science and Engineering, 2017, 230 (1): 012015.
- [34] XU C, XIAO W, ZHENG R, et al. The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al-Si-Mg alloy [J]. Materials & Design, 2015, 88: 485–492.
- [35] SOKOLOWSKI J H, DJURDJEVIC M B, KIERKUS C A, et al. Improvement of 319 aluminum alloy casting durability by high temperature solution treatment [J]. Journal of Materials Processing Technology, 2001, 109 (1): 174–180.
- [36] COLOMBO M, BUZOLIN R H, GARIBOLDI E, et al. Effects of Er and Zr additions on the As-cast microstructure and on the solutionheat-treatment response of innovative Al-Si-Mg-based alloys [J]. Metallurgical and Materials Transactions A, 2020, 51 (2): 1000–1011.
- [37] PRAMOD S L, RAO A P, MURTY B S, et al. Microstructure and mechanical properties of as-cast and T6 treated Sc modified A356-5TiB2 in-situ composite [J]. Materials Science and Engineering: A, 2019, 739: 383–394.
- [38] SERSOUR Z, AMIROUCHE L. Effect of alloying additions and high temperature T5-treatment on the microstructural behavior of Al-Sibased eutectic and hypo-eutectic alloys [J]. International Journal of Metalcasting, 2022, 16 (3): 1276–1291.
- [39] 樊振中,陈军洲,陈鑫磊,等. 二次固溶处理对Sb变质ZL114A合金组织性能的影响 [J]. 铸造, 2019, 68(4): 336-343.
- [40] 樊振中,王胜强,陆政,等. 高强韧Al-Si-Mg合金成分设计与优化 [J]. 特种铸造及有色合金,2015,35(3): 232–236.
- [41] TZENG Y C, NIEH J K, BOR H Y, et al. Effect of trace Be and Sc additions on the mechanical properties of A357 alloys [J]. Metals, 2018, 8 (3): 194.
- [42] ZHAN H, HU B. Analyzing the microstructural evolution and hardening response of an Al-Si-Mg casting alloy with Cr addition [J]. Materials Characterization, 2018, 142: 602–612.
- [43] TOCCI M, DONNINI R, ANGELLA G, et al. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy [J]. Materials Characterization, 2017, 123: 75–82.
- [44] SUN F, NASH G L, LI Q, et al. Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys [J]. Journal of Materials Science & Technology, 2017, 33 (9): 1015–1022.
- [45] PRAMOD S L, RAVIKIRANA, RAO A K P, et al. Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy [J]. Materials Science and Engineering: A, 2016, 674: 438–450.
- [46] 熊艳才,刘伯操.铸造铝合金现状及未来发展 [J]. 特种铸造及有色合金, 1998 (4): 3-7.
- [47] 周玉立,张俊超,林师朋,等.Fe含量对铸造铝合金导热和力学性能的影响 [J].特种铸造及有色合金,2021,41(4):416-419.
- [48] LIMMANEEVICHITR C, PONGANANPANYA S, KAJORNCHAIYAKUL J. Metallurgical structure of A356 aluminum alloy solidified under mechanical vibration: An investigation of alternative semi-solid casting routes [J]. Materials & Design, 2009, 30 (9): 3925– 3930.
- [49] TAGHAVI F, SAGHAFIAN H, KHARRAZI Y H. Study on the effect of prolonged mechanical vibration on the grain refinement and density of A356 aluminum alloy [J]. Materials & Design, 2009, 30 (5): 1604–1611.

1234 **15 世** FOUNDRY 专题综述

- [50] HAGHAYEGHI R, HEYDARI A, KAPRANOS P. The effect of ultrasonic vibrations prior to high pressure die-casting of AA7075 [J]. Materials Letters, 2015, 153: 175–178.
- [51] JIAN X, MEEK T T, HAN Q. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration [J]. Scripta Materialia, 2006, 54 (5): 893–896.
- [52] ABRAMOV V, ABRAMOV O, BULGAKOV V. Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator [J]. Materials Letters, 1998, 37 (1-2) : 27-34.
- [53] 曹阳,陈乐平,周全.高强铝合金物理法晶粒细化研究进展 [J].铸造技术,2013,34 (6):675-677.
- [54] ZHANG H T, CUI J Z. Production of super-high strength aluminum alloy billets by low frequency electromagnetic casting [J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (10): 2134–2139.
- [55] 班春燕,崔建忠,巴启先,等.在脉冲电流或脉冲磁场作用下LY12合金的凝固组织[J].材料研究学报,2002,16(3):322-326.
- [56] ZHANG X, HUANG L K, ZHANG B, et al. Microstructural evolution and strengthening mechanism of an Al-Si-Mg alloy processed by high-pressure torsion with different heat treatments [J]. Materials Science and Engineering: A, 2020, 794: 139932.
- [57] 张洪信,姜勇,张铁柱,等.铝合金压力铸造技术的现状与展望[J].铸造,2007,56(12):1247-1250.
- [58] 李干,卢宏兴,罗敏,等.铝合金半固态流变成形技术研究进展[J].精密成形工程,2020,12(3):29-48.
- [59] 章爱生,黄为民.预时效对A357合金组织与力学性能的影响 [J].金属热处理,2014,39(10):21-24.
- [60] MENARGUES S, MARTÍN E, BAILE M T, et al. New short T6 heat treatments for aluminium silicon alloys obtained by semisolid forming [J]. Materials Science and Engineering: A, 2015, 621: 236–242.
- [61] DROUZY M, JACOB S, RICHARD M. Interpretation of tensile results by means of quality index and probable yield strength-application to Al-Si7Mg foundry alloys-France [J]. International cast metals journal, 1980, 5 (2): 43–50.
- [62] WANG Y, LIU Q, YANG Z, et al. Effect of Ce addition and heat treatment on microstructure evolution and tensile properties of industrial A357 cast alloy [J]. Metals, 2020, 10 (8): 1100.

Application Status and Advances of High Strength and Toughness Fabrication of Al-Si-Mg Cast Alloys

HU Hui-xiang¹, FAN Zhen-zhong^{2, 3}, LUO Ting-rui¹, ZHANG Zhe⁴, TIAN Yan-zhong¹

(1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, Liaoning, China; 2. Beijing Institute of Aeronautical Materials, Beijing 100095, China; 3. Beijing Advanced Engineering Technology and Application Research Center of Aluminum Materials, Beijing 100095, China; 4. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China)

Abstract:

This paper summarized the current status of Al-Si-Mg casting alloys and research progress on high toughness preparation, as well as grain refinement, silicon phase densification, precision heat treatment, composition design, and equipment for forming-property acquiring processes, summarized the effects of preparation processes on the microstructure and mechanical properties of the casting alloys and provided a summary of their mechanical properties. Mechanical properties of Al-Si-Mg casting alloy were discussed. Finally, the technical outlook on material composition design, casting of fine-grained specimen, computer-aided engineering development and high toughness precision heat treatment process development were presented.

Key words:

Al-Si-Mg casting alloy; application status; microstructure; mechanical properties; grain refinement; silicon phase modification; high strength and toughness fabrication