热处理制度对 K417G 铸造高温合金组织 和性能的影响

谢秋峰^{1,2},熊家帅^{1,2},代淑荣²,王晓慧²,陈兴福^{1,2},吴剑涛^{1,2},朱小平^{1,2} (1.北京钢研高纳科技股份有限公司,北京100081; 2.河北钢研德凯科技有限公司,河北保定071000)

> **摘要:** 对K417G合金经过 "1 080 ℃/4 h, AC+870 ℃/12 h, AC" 固溶+时效热处理后的显微组 织、性能进行了研究。结果表明,与铸态相比,经 "1 080 ℃/4 h, AC" 固溶处理后,铸态部 分 γ '相已经溶解,并且初生 γ '相附近聚集着尺寸更小的二次 γ '相颗粒; 室温抗拉强度和塑 性提高,而900 ℃抗拉强度变化不大,塑性指标却明显降低。再经 "870 ℃/12 h, AC" 时效 处理后, γ '相呈现为规则的立方形,二次 γ '相有所长大,尺寸约为20~100 nm; 900 ℃塑性 指标有一定提升,其他力学性能与铸态相比变化不明显。 **关键词:** K417G; 热处理; 显微组织; 力学性能

K417G合金是在 K417合金基础上发展而来的镍基铸造高温合金,其具有密度 小、塑性好、中温强度高、组织稳定性高、铸造工艺优良等优点^[1]。K417G在国内 应用范围广、成熟度高、价格便宜,广泛应用于燃气涡轮叶片、导向叶片、整体叶 盘及其他高温部件,可在950 ℃长期使用^[2]。采用K417G合金生产的零件使用状态通 常为铸态^[3-5]。由于铸造工艺不同,零件尺寸厚度不同,加之镍基铸造高温合金凝固 期间容易形成成分偏析,最终得到的显微组织形貌差别较大,力学性能波动较大, 美国相似牌号合金IN100多为热处理状态使用,而国内对K417G合金的热处理研究很 少,为此,本研究开展了K417G合金的热处理研究,探讨热处理对合金组织和性能 的影响,以期改善K417G合金的显微组织和力学性能。

1 试验材料与方法

本研究采用ZG-1.5L型真空感应炉熔炼K417G母合金,其合金主要化学成分如表 1所示,然后采用熔模铸造法,在ZG-0.01L型真空感应炉中重熔母合金后,在1 420~1 440 ℃温度范围内浇注Φ5 mm标准成形试棒(灯笼型模组,硅溶胶型壳), 试棒尺寸如图1所示。

Fig. 1 Dimensional drawing of tensile test bar

作者简介: 谢秋峰(1985-),男, 硕士,高级工程师,主要 研究方向为铸造高温合金 及其精铸工艺。电话: 13436716391,E-mail: xie_qiufeng@126.com

中图分类号:TG249 文献标识码:A 文章编号:1001-4977(2024) 02-0150-04

收稿日期: 2023-10-29 收到初稿, 2023-12-22 收到修订稿。 本试验参照国外IN100合金、IN731合金、Rene100 合金资料^[6-7],研究固溶(1080 °C/4 h, AC)+时效 (870 °C/12 h, AC)热处理对K417G合金组织和性 能的影响。分析K417G合金铸态、固溶态、固溶+时 效态下的显微组织,并测试分析三种状态的试样的室 温和高温拉伸性能。不同状态下显微组织的观察采用 OLYMPUS GX71光学显微镜, γ '相的观察采用ZEISS-SUPRA55场发射扫描电子显微镜进行,采用电解腐蚀 法对试样进行腐蚀,电解腐蚀剂为: 16 g Cr₂O₃+10 mL H₂SO₄+170 mL H₃PO₄,电压: 5~6 V,电流密度: 0.5 A/cm²,时间: 10~20 s。

2 试验结果与分析

2.1 不同状态下碳化物的形貌观察

图2为K417G合金铸态与热处理后的碳化物形貌照 片,从图中可以看出,三种状态下的碳化物形貌无明 显差别,大都为块状或颗粒状,经固溶(1080℃/4h, AC)处理后,碳化物尺寸变小,数量增多,再经时效 (870℃/12h,AC)处理后又变得跟铸态差别不大, 但有的碳化物形态为细长条状,经能谱分析,该碳化 物多为MC型碳化物。

2.2 不同状态下显微组织的观察

图3为K417G合金铸态与"固溶+时效"热处理后 的光学显微组织照片,从图中可以看出,铸态组织中 枝晶间析出的白色"γ+γ'"共晶尺寸较大;经固溶、 时效处理后,单个共晶组织尺寸变小,数量变多,可 能是经过热处理后,局部组织偏析程度降低所致。

2.3 不同状态下 y'相的形貌观察

图4为K417G合金铸态与"固溶+时效"热处 理后的 γ '相形貌照片,从图中可以看出,经固溶 (1080 °C/4 h,AC)处理后,铸态部分 γ '相仅部分 溶解,在更高的倍数下观察,可以观察到初生 γ '相附 近聚集着尺寸更小的二次 γ '相颗粒,如图4b中箭头所 示,这可能是由于固溶温度低,初生 γ '相溶解较少, 固溶析出的二次 γ '相来不及长大的原因;再经时效 (870 °C/12 h,AC)处理后, γ '相呈现为规则的立方 形,同时,在同样的倍数下,可见细小的二次 γ '相。 这些尺寸细小的 γ '相尺寸约为20~100 nm,说明二次 γ '相在时效过程中有所长大。

2.4 不同状态下力学性能结果分析

对不同状态下的K417G合金试样的力学性能进行

(a)铸态

(b) 1080 °C/4h, AC

(c) 1 080 °C/4 h, AC+870 °C/12 h, AC

图2 K417G合金铸态与热处理后的碳化物对比照片 Fig. 2 Carbide morphology of K417G alloy as cast and after heat treatment

(a)铸态

(b) 1 080 ℃/4 h, AC
 (c) 1 080 ℃/4 h, AC+870 ℃/12 h, AC
 图3 K417G合金铸态与热处理后的显微组织对比照片
 Fig. 3 Optical microstructure of K417G alloy as cast and after heat treatment

(b) 1 080 ℃/4 h, AC
 (c) 1 080 ℃/4 h, AC+870 ℃/12 h, AC
 图4 K417G合金铸态与热处理后 γ ′相对比照片
 Fig. 4 Morphologies of γ ′ Phase in K417G alloy as cast and after heat treatment

了检测,主要进行了室温拉伸和900 ℃拉伸试验,结 果如图5所示。从图5中可以看出,与铸态相比, 经"1080℃/4h,AC"固溶处理后,室温抗拉强度提 高,塑性提高,但屈服强度降低;而900 ℃拉伸抗拉 强度变化不大,屈服强度有较大提高,塑性指标却明 显降低。再经"870 ℃/12 h, AC"时效处理后, 室温 抗拉强度与铸态的相当, 900 ℃抗拉强度低于铸态 值20 MPa, 室温、900 ℃塑性指标与铸态相比略有提 高。

3 结论

K417G合金经固溶(1080 ℃/4 h, AC)+时效(870 ℃/12 h, AC)热处理后,显微组织得到了改

善, γ′相呈现为规则的立方形,并且析出了较多的细 小二次γ′相;900 ℃高温拉伸断面收缩率由13.3%提升 至14.5%,其他力学性能与铸态相当。

参考文献:

- [1] 《中国航空材料手册》编写委员会. 中国航空材料手册(第2版) [M]. 第2卷. 北京:中国标准出版社, 2002: 599-609.
- [2] 李佳佳,何爱杰,钟燕,等.K417G涡轮整体叶盘叶片裂纹原因分析与验证[J].燃气涡轮试验与研究,2017,30(4):28–33.
- [3] 王晓轩,国振兴,于兴福,等.浇注温度对K417G合金组织及力学性能的影响[J].铸造,2014,63(9):924-928.
- [4] 徐岩,郭宁仁,卢德忠. K417G 铸造高温合金的尺寸效应对组织和性能的影响 [J]. 金属学报,1999,35(12):1249–1252.
- [5] 马亚芹,于兴福,孙文儒. K417G合金 γ + γ '共晶初熔特性及影响因素研究 [J]. 铸造, 2014, 63 (2): 185-189.
- [6] JAFARIA, ABBASISM, RAHIMIA, et al. The effects of solution treatment on the microstructure of the cast Ni-based IN100 superalloy
 [J]. Metallurgical & Materials Engineering, 2015, 21 (3): 167–182.
- MARTIN Heilmaier, UTJE Leetz, BERND Reppich. Order strengthening in the cast nickel-based superalloy IN 100 at room temperature [J]. Materials Science & Engineering A, 2001, 319: 375–378.

Influence of Heat Treatment on Microstructure and Mechanical Properties of K417G Superalloy

XIE Qiu-feng^{1, 2}, XIONG Jia-shuai^{1, 2}, DAI Shu-rong², WANG Xiao-hui², CHEN Xing-fu^{1, 2}, WU Jian-tao^{1, 2}, ZHU Xiao-Ping^{1, 2}

(1. Beijing CISRI-Gaona Materials & Technology Co., Ltd., Beijing 100081, China; 2. Dekai Intelligent Casting Co., Ltd., Baoding 071000, Hebei, China)

Abstract:

The microstructure and properties of K417G alloy after solution+aging heat treatment at 1 080 $^{\circ}$ C /4 h, AC+ 870 $^{\circ}$ C /12 h, AC were studied. The results show that the secondary γ' phase is precipitated in K417G after solution treatment, its tensile strength and plasticity at room temperature increases, but the plasticity property in high temperature decrease apparently. After aging at 870 $^{\circ}$ C for 12 h, the γ' phase became regular cubic shape, the size of the secondary γ' phase particles tend to increase, up to 20-100 nm. Its plasticity property at 900 $^{\circ}$ C has improved, and other properties are equivalent with room temperature.

Key words:

K417G; heat treatment; microstructure; mechanical properties