超高速激光熔覆 FeAl-TiB2 复合涂层的 摩擦磨损性能研究

智俊旻¹,王世强¹,张 奎¹,牟广强¹,潘光浩²,李 祥²,崔译丹²,迟新宇²,袁建军²

(1. 山东方大工程有限责任公司,山东淄博 255120;2. 山东科技大学 智能装备学院,山东泰安 271001)

摘要:为了提高FeAI基复合涂层在高温(600 ℃)下的摩擦磨损性能,以Fe粉末、AI粉末和TiB₂粉末为原始粉末,采用超高速激光熔覆工艺在32Cr3Mo1V钢表面原位制备了不同TiB₂质量分数的FeAI-TiB₂复合涂层。研究了复合涂层的相组成、组织和磨损机理。结果表明:原位合成的复合涂层与基体之间形成了良好的冶金结合,随着TiB₂质量分数的增加涂层表面更加致密,重熔的TiB₂以网格状的形式分布在复合涂层表面。TiB₂增强相能够承受摩擦过程中的压应力与剪切力,有效提升了复合涂层的耐磨性能。当TiB₂质量分数为10%时复合涂层的摩擦系数和磨损率最低,耐磨性能最佳。随着TiB₂质量分数的上升,磨损方式已由塑性变形逐步向磨粒磨损转变,同时伴随着氧化磨损。

关键词: FeAl-TiB₂复合涂层; 原位合成; 超高速激光熔覆; 耐磨性能; 磨损机制

汽车发动机配件以及铝合金的铸造、锻造等高温领域的工程模具都存在严重 的高温摩擦磨损失效现象。因此,在该类重要的零部件表面制备性能优异的耐高温 摩擦性能的涂层,对于提高该类零件的使用寿命和减少材料浪费具有重要的研究价 值。

FeAl金属间化合物由于其密度低、硬度高、抗氧化性好、成本低廉,易于加工 等优点,被认为是一种很有潜力的高温结构材料^[1-2]。近年来,研究人员通过研究高 温条件下单一的FeAl金属间化合物涂层的摩擦磨损性能,发现磨损率会随着载荷的 增加而迅速增加,表明FeAl金属间化合物在高温下的耐磨损性能还不理想^[3]。在此 前对FeAl及其合金的磨损性能的研究中,研究人员通过在FeAl涂层中添加Al₂O₃^[4]、 Ti/C^[5]、Nb和B^[6]、CeO₂/ZrO₂^[7]等陶瓷颗粒,证实陶瓷材料的添加能够使FeAl基复合 材料涂层的耐磨性能得到显著提升,进一步拓展了FeAl涂层在工业中的应用范围。 TiB₂作为一种新型的陶瓷材料,具有熔点高、硬度大、化学稳定性高、力学性能优异 等优点^[8-10],研究人员通过在304不锈钢基体^[11]、铝基复合材料^[12]、GCr15钢^[13]、6061 铝合金^[14]、Ti-6Al-4V^[15]表面制备含TiB₂的复合涂层,均有效提高了复合涂层的耐磨 性能。在高温条件下,相较于碳化硅(SiC)、氮化硅(Si₃N₄)等陶瓷材料,TiB₂与 Fe、Al的润湿性较好,接触时更不易发生粘着,同时与FeAl金属间化合物结合可以 弥补TiB₂韧性差,不易烧结等方面的缺陷,因此本试验选择制备FeAl-TiB₂复合涂层 来提高FeAl基复合涂层的耐磨性能。

相比较于传统的激光熔覆,超高速激光熔覆技术可以在熔覆过程中将涂层材料 和基材表面一起熔凝,在基材表面形成与其冶金结合的熔覆层。该技术具有涂覆效 率高,涂层表面成形好,内部组织结构更加致密,拥有更加出色的摩擦磨损性能^[16-17]。 研究人员通过超高速激光熔覆技术在钢基体上制备Ni45合金涂层^[18]、在高压柱塞45 号钢基材上制备SD-Ni45耐磨涂层^[19]、在45号钢基体上制备FeCrMoMn镀层^[20]、在 5CrNiMo基体上制备H13涂层^[21]均证明了超高速激光熔覆制备的涂层具有优异的耐磨 性能。目前相关研究中,超高速激光熔覆技术结合原位反应制备FeAl复合材料涂层

作者简介: 智俊旻(1990-),男,中 级工程师,主要研究方向 为材料表面强化。电话: 15560610883,E-mail: 13789410936@163.com

中图分类号:TB333 文献标识码:A 文章编号:1001-4977(2024) 11-1512-09

基金项目:

国家自然科学基金面上项目 (52174145);山东省科技 型中小企业创新能力提升工 程项目(2022TSGC1271); 山东省自然科学基金 (ZR2020KE013)。 收稿日期: 2023-02-02收到初稿, 2024-03-12收到修订稿。 的相关文献还较少。

采用超高速激光熔覆工艺在32Cr3Mo1V钢表面 制备了一种新型FeAl-TiB₂复合涂层,研究了TiB₂的加 入对FeAl基复合材料涂层微观组织、摩擦学性能的影 响,以期望其可以提供一种新的工艺方法和材料选 择。

1 试验

1.1 材料准备

以32Cr3Mo1V钢为基体材料, Fe(99.5%纯度, 25~40 μ m)、Al(99.5%纯度,25~40 μ m)、TiB₂ (99.5%纯度,25~40 μ m)为熔覆粉末,以不同质量分 数TiB₂为成分梯度,设置不同加入量的对照试验,具体 配比见表1,熔覆粉末形貌如图1所示。用电子天平按 质量配比对粉末进行称量,将配置好的粉末放入行星 球磨罐中机械混合,设置时间2 h,转速200 r/min,以 确保均匀性。

1.2 涂层制备

在激光熔覆试验准备阶段,利用线切割技术将 32Cr3Mo1V钢板切割成70 mm×70 mm×10 mm的长方 体试样后,使用抛光机打磨试样,去除表面的氧化层 以及较浅的磨痕,再用丙酮和酒精清洗样品,去除表 面油污,准备完毕后钢板放到熔覆设备内准备进行熔 覆。本试验保护气体为氩气,超高速激光熔覆的参数 如表2所示,原理如图2所示。熔覆完成后将熔覆层切 割至20 mm×20 mm×10 mm长方体,用砂纸与研磨膏

表1 复合涂层成分 Table 1 Chemical composition of mixtures for coating

				W B / /0
涂层	FeAl	TiB ₂	Fe/Al的摩尔比	
C1	100	0	1:1	
C2	95	5	1:1	
C3	90	10	1:1	
C4	85	15	1:1	

(a) Fe粉末

(b) Al粉末 图1 Fe、Al和TiB₂粉末的SEM形貌 Fig. 1 SEM morphologies of Fe, Al and TiB₂ powders

表2	超高速激光熔覆工艺参数
Table 2 Extreme hig	h-speed laser cladding process parameters

激光功率/kW	扫描速度/ (m・min ⁻¹)	光斑直径/mm	给粉速度/(g·min ⁻¹)	重叠率/%	
2.5	14	1	20	70	

图2 超高速激光熔覆原理图

Fig. 2 Schematic diagram of extreme high-speed laser cladding

打磨抛光至表面粗糙度*Ra*为0.08~0.18 μm后进行摩擦磨 损试验。

(c) TiB₂粉末

1.3 摩擦测试

摩擦磨损试验在按照ASTM标准G99-95进行测试 (实验仪器:HT-1000,兰州中科凯华科技开发有限公 司)。在20 N的接触载荷下,复合材料圆盘试样在 直径5 mm的滚珠滑块上进行旋转和滑动,滑动速度为 2.94 m/s,摩擦半径为10 mm,选择的试验温度为600 ℃, 测试时间为30 min。摩擦副使用的是氮化硅球,表面粗 糙度(Ra)为0.01 mm。摩擦系数由计算机系统自动测 量并实时记录,用白光干涉仪对磨痕轮廓进行表征, 并结合软件计算磨损体积和磨损深度。

1.4 显微结构评估

利用HV-1000型维氏硬度计测复合材料的维氏硬 度,载荷为2 N,保载时间为10 s,测8次取平均值。 采用扫描电镜(FESEM,HITACHI SU-70)和能谱 (EDS,HORIBA EX-250)对复合涂层的微观结构和 磨损表面形貌及其元素分布进行了研究。用X射线衍 射(XRD,Rigaku D/MAZ-RC)分析相组成,采用铜 靶,Kα射线,工作电压为40 kV,工作电流为40 mA, 扫描范围为10°~90°。

2 试验结果及分析

2.1 复合材料的微观结构分析

图3为两种不同质量分数的FeAl-TiB₂复合涂层的 XRD谱图。通过在10°~90°的范围内收集的样品的峰 值,证实特征峰以FeAl和TiB₂为主,同时含有少量TiB 和Ti₃B₄。表明在激光熔覆过程中,起始阶段加入的混 合粉末中的Fe粉和Al粉发生了原位反应,生成了FeAl 金属间化合物。在试验中由于激光束与涂层材料的相 互作用时间过短,激光束的能量高度集中,TiB₂本身 具有良好的稳定性,熔点较高(2980℃),在熔池 中难熔化分解,因此绝大部分的TiB₂在涂层中保持完 整^[22],仅有少量的TiB₂分解并重新生成了少量的TiB、 Ti₃B₄和TiB₂。在本次试验的体系中,由于B的原子分 数较低,且熔覆试验的冷却速度较快,因此包晶反应 L+Ti₃B₄→TiB并未完全发生,TiB相和Ti₃B₄相同时存 在。

图4为C3复合涂层的截面形貌,涂层截面有三个不同的区域:基体、热影响区和涂层区域,TiB₂颗粒分散在涂层区域,与FeAI基体结合紧密,有利于提高二者间的结合强度并减小尖端应力集中,改善复合涂层的

图4 C3复合涂层截面的SEM图像 Fig.4 SEM image of cross-sections of C3 composite coating

摩擦学性能。可以发现界面处没有孔隙,复合涂层与 基体之间实现了良好的冶金结合^[23]。

为进一步确定复合涂层中的成分,对C3复合涂层 进行了面分析,其EDS谱图如图5所示。Fe元素和Al元 素的分布基本与基体部分重合,Ti元素和B元素的分布 与白色颗粒重合,可以证实涂层基体部分主要由FeAl 基复合材料构成,白色颗粒主要由TiB₂陶瓷相构成,且 TiB₂颗粒在激光熔覆的作用下发生重熔并均匀地分布在 FeAl晶界中。

FeAl-TiB₂复合涂层的SEM图像如图6所示。图6a 为FeAl涂层的微观结构,由于高能束的激光和原位反 应共同作用,涂层材料充分熔化,形成了致密组织结 构,涂层内存在部分较小的孔洞。图6b-图6d可以看 出,涂层表面更加致密,孔洞和裂纹逐渐消失,TiB₂颗 粒完全重熔成较小尺寸颗粒,以增强相的形式沿FeAl 晶界均匀分布,且随着TiB₂质量分数的增加,陶瓷相以 网格状的形式在涂层表面分布得更为密集。同时由于 FeAl粉末与TiB₂粉末的塑性不同,在相同载荷与压下量 情况下,二者变形程度不一致,因此随着TiB₂质量分数 的上升,陶瓷颗粒出现了部分团聚现象。

2.2 显微硬度

复合涂层截面显微硬度曲线如图7所示,由图可 知,涂层硬度分布较为均匀,且随着TiB₂陶瓷颗粒质 量分数的上升,复合涂层硬度逐渐提高,C4涂层的硬 度最高,约为C1涂层的1.3倍。TiB₂硬度较高且密度较 低,因此在熔池对流的作用下集中于凝固速度较快的 熔池上部,导致复合涂层上部TiB₂陶瓷相含量较高, TiB₂陶瓷相可以在复合涂层表面起到弥散强化和固溶强 化的效果,这是复合涂层硬度随着TiB₂质量分数的上升 逐渐提高的原因。

2.3 摩擦磨损性能分析

复合涂层的摩擦系数如图8所示。可以发现,复

(d) Ti (e) B 图5 C3复合涂层的EDS分析 Fig. 5 The EDS analysis of C3 composite coating

(a) C1

(b) C2

(c)C3 (d)C4 图6 FeAl-TiB₂复合涂层的SEM图像 Fig. 6 SEM image of FeAl-TiB₂ composite coatings

合涂层在开始阶段摩擦系数曲线波动较大,这是由于 涂层表面在高温下形成了保护性摩擦膜,其能够有效 抑制对偶球与涂层之间的直接摩擦,随着摩擦膜的逐 渐破坏,陶瓷球开始与内表面发生摩擦,导致摩擦系数下降,当涂层与对应涂层之间的接触区域变得光滑时,整体摩擦就得到平衡,磨损进入稳定状态。从总

1516 有造 FOUNDRY 试验研究

图7 复合涂层显微硬度分布 Fig. 7 Microhardness distribution of composite coatings

体上看,在加入TiB₂陶瓷颗粒后,摩擦系数呈现先降低 后升高的变化趋势,这是由于TiB₂的加入一方面提高了 涂层的硬度,另一方面TiB₂陶瓷相可防止在磨损过程中 与摩擦对偶接触时产生碎屑。当TiB₂陶瓷相质量分数过 高时,在磨损过程中FeAI部分最先被磨损,从而在表 面留下高硬度的TiB₂,使得涂层的表面粗糙度增大,复 合涂层的摩擦因数略有增加。如图8b所示,C3复合涂 层的平均摩擦系数最低,为0.48,波动幅度较小,FeAI 涂层的平均摩擦系数最高,为0.71。TiB₂的加入可以降 低摩擦系数,改善摩擦性能。

图9为复合涂层的磨损率。C1涂层的磨损率最高, 为8.5×10⁻⁵ mm³·N⁻¹·m⁻¹。C3复合涂层的磨损率最低,为5.7×10⁻⁵ mm³·N⁻¹·m⁻¹,相较于C1涂层磨损率

(b) FeAl-TiB₂复合涂层平均摩擦系数

图8 FeAl-TiB₂复合涂层摩擦系数的变化和平均摩擦系数 Fig. 8 Variation and average friction coefficient of FeAl-TiB₂ composite coatings

图9 FeAI-TiB₂复合涂层的磨损率 Fig. 9 Wear rate of FeAI-TiB₂ composite coatings

降低了约30%。加入TiB₂后,TiB₂在涂层中分布均匀, 涂层硬度得到明显提高。此外,在摩擦磨损试验中, TiB₂的铆接效果明显,与原始涂层相比,FeAl-TiB₂复 合涂层的磨损量降低,耐磨性显著提高。

图10为FeAl涂层和FeAl-TiB2复合涂层磨损表面的

三维形貌。结果表明,单一FeAI涂层的摩擦表面的磨 痕深度和宽度较大,在塑性变形的作用下表面磨损严 重。在添加TiB₂颗粒后,摩擦表面的磨痕深度有了显著 变化,深度由23.71 µm降至10~20 µm,当TiB₂质量分数 为10%时,复合涂层的磨痕深度最浅为11.27 µm,这是 由于TiB₂颗粒作为增强相,对涂层表面有保护作用,同 时少量的陶瓷颗粒及氧化物在磨损过程中由于摩擦热 的作用,起到了一定的润滑作用,且TiB₂可作为骨架对 摩擦副进行加载,既降低了摩擦系数和磨损率,又提 高了磨损表面的光滑度^[24]。同时随着TiB₂质量分数的上 升,更多的增强相硬质颗粒裸露在复合涂层表面,使 得摩擦过程中摩擦副与涂层表面接触面积大小不一, 导致复合涂层磨痕表面的轮廓呈现出一定的深浅不

FeAI涂层和FeAI-TiB₂复合涂层的表面磨损形貌如 图11所示。如图11a所示,单一FeAI涂层磨损表面没 有观察到较大的划痕,但可以观察到边界存在塑性变 形及大量碎屑,这是由于随着载荷的增加,真实接触

Fig. 10 Two-dimensional and three-dimensional wear morphologies of FeAl coating and FeAl-TiB₂ composite coatings

点上的应力超过屈服极限之后,发生了塑性变形,塑 性变形导致萌生微孔和裂纹,他们的扩展就形成了磨 屑,且因为试验时温度升高,使得磨屑粘接到一块, 导致了磨屑大小不一。

从图11b可以看出,加入TiB₂后复合涂层硬度虽有 提升,但涂层磨损表面仍存在大量的塑性变形,反复 循环的塑性变形造成了部分碎屑的产生,碎屑的数量 会随着涂层硬度的提升逐渐下降。由于TiB₂含量低,涂 层中TiB₂颗粒未出现明显的颗粒断裂,磨损机制以黏着 磨损为主。图11c中的复合涂层磨损表面最为光滑,显 微硬度明显提升,使复合涂层不易形成沟槽,磨屑的 数量和规模明显下降,塑性变形仍是最主要的磨损机 制。图11d的磨痕存在极其明显的剥落,随着TiB₂质量 分数的上升,更多在涂层表面松散结合的硬质TiB₂颗粒 与Si₃N₄陶瓷球接触,点面接触的数量不断上升,TiB₂ 增强相能够承受摩擦过程中的压应力与剪切力,进一

1518 有估 FOUNDRY 试验研究

步降低FeAl部分在摩擦过程的剥落。在TiB₂硬质相的含量进一步上升后,当FeAl部分承受载荷发生塑性变形时,由于与之相连的是TiB₂陶瓷颗粒硬质相,无法缓解载荷,因此FeAl部分先被磨损剥落,使得TiB₂颗粒突出表面,对摩擦副产生切削,磨粒磨损的犁耕效应使复合涂层表面出现剥落坑和犁沟,破坏了复合涂层表面。同时进一步证明了TiB₂颗粒能够与FeAl基复合材料有效结合,提升复合涂层承受外界载荷的能力^[25-27]。

图12为C3复合涂层磨损表面EDS谱图,从图中可以看出,磨损表面结构致密,分布元素主要由Fe、Al、O、Si、N、B和Ti组成,几乎所有的主要元素都是均匀分布的。此外,大量O元素的存在表明,在磨

损试验中形成了以氧化铝、氧化硼和氧化钛为主的氧化物。在之前的研究中已经证实,复合材料中的氧化物可以作为固体润滑剂改善涂层的耐磨性能^[13, 28]。同时,自润滑层有利于提高复合涂层在恶劣环境下的摩擦学性能。元素分布结果表明,氧化磨损是C3复合涂层的磨损机制之一。Si来自于Si₃N₄陶瓷球摩擦副,这是摩擦副在滑动过程中强烈的研磨作用造成的。

3 结论

(1)采用超高速激光熔覆工艺,成功在32Cr3MolV 钢表面原位制备了FeAl-TiB₂复合涂层,该涂层微观组 织致密,无裂纹孔洞,虽然TiB₂颗粒之间有聚合和熔合

图12 C3复合涂层磨损表面EDS分析

Fig. 12 The EDS analysis of C3 composite coating wear surface

现象出现,但相对均匀地分布在FeAl晶界中,复合涂 层与基体呈现良好的冶金结合。

(2)在不添加TiB₂的情况下,FeAl涂层在摩擦过 程中因塑性变形产生较多的碎屑,在加入TiB₂颗粒后, 磨损表面承受外界载荷的能力明显提升,复合涂层不 易形成沟槽和塑性变形,磨痕深度显著下降,磨损方 式已由塑性变形逐步向磨粒磨损转变,同时伴随着氧 化磨损。 (3)在温度为600 ℃,摩擦副为氮化硅球,接触 载荷为20 N,滑动速度为2.94 m/s,摩擦半径为10 mm 的试验条件下,TiB₂含量为10wt.%的C3复合涂层磨损 表面质量最佳,磨痕深度最低,为11.27 µm,摩擦系数和 磨损率也最低,分别为0.48和5.7×10⁵ mm³·N¹·m¹,耐 磨性能最佳。在相同条件下,耐磨性能相较于原始涂 层提升了约30%。

参考文献:

- [1] DEEVI S C. Advanced intermetallic iron aluminide coatings for high temperature applications [J]. Progress in Materials Science, 2021, 118: 100769.1-100769.42.
- [2] 胡胜华,王菲菲,向军淮,等.铁铝金属间化合物的改性研究进展 [J]. 化工设计通讯, 2018, 44 (7): 145-146.
- [3] ZHANG Q Y, ZHOU Y, LIU J Q, et al. Wear behavior and mechanism of Fe-Al intermetallic coating prepared by hot-dip aluminizing and diffusion [J]. Metallurgical and Materials Transactions A, 2016, 47 (5): 2232–2242.
- [4] SONG B, DONG S, LIAO H, et al. Microstructure and wear resistance of FeAl/Al₂O₃ intermetallic composite coating prepared by atmospheric plasma spraying [J]. Surface and Coatings Technology, 2015, 268: 24–29.
- [5] KANT R, PRAKASH U, AGARWALA V, et al. Wear behaviour of an FeAl intermetallic alloy containing carbon and titanium [J]. Intermetallics, 2015, 61: 21–26.
- [6] CHEN Y, LIANG X, BAI J, et al. High velocity electric arc sprayed Fe-Al-Nb-B composite coating and its wear behavior [J]. Acta Metallurgica Sinica (English Letters), 2013, 26 (3): 313–320.
- [7] YIN B, LIU G, ZHOU H, et al. Microstructures and properties of plasma sprayed FeAl/CeO₂/ZrO₂ nano-composite coating [J]. Applied Surface Science, 2010, 256 (13): 4176–4184.
- [8] ZHAO G, WANG J, DENG Y, et al. The study of the tribological properties of TiB₂/Cr multilayered coatings over a wide temperature range [J]. Journal of Materials Research and Technology, 2022, 16: 290–301.
- [9] 屈敏,刘鑫,崔岩,等.TiB₂颗粒尺寸和质量分数对原位自生TiB₂/Al复合材料耐磨性能的影响[J].铸造,2018,67(5):404-408+413.
- [10] ZOU K, ZOU J P, DENG C M, et al. Preparation and properties of supersonic atmospheric plasma sprayed TiB₂-SiC coating [J]. Transactions of Nonferrous Metals Society of China, 2021, 31 (1) : 243–254.
- [11] WANG Y, ZHANG W, CHEN D, et al. High temperature friction and wear performance of TiB₂-50Ni composite coating sprayed by HVOF technique [J]. Surface and Coatings Technology, 2021, 407: 126766.1–126766.14.
- [12] DEY D, BHOWMIK A, BISWAS A. Influence of TiB₂ addition on friction and wear behaviour of Al2024-TiB₂ ex-situ composites [J].

Transactions of Nonferrous Metals Society of China, 2021, 31 (5): 1249-1261.

- [13] ZHU H B, LI H, YANG H X, et al. Microstructure and sliding wear performance of plasma-sprayed TiB₂-Ni coating deposited from agglomerated and sintered powder [J]. Journal of Thermal Spray Technology, 2013, 22 (8): 1310–1319.
- [14] CHI Y, GONG G, ZHAO L, et al. In-situ TiB₂-TiC reinforced Fe-Al composite coating on 6061 aluminum alloy by laser surface modification [J]. Journal of Materials Processing Technology, 2021, 294: 117107.2–117107.11.
- [15] WENG F, YU H, DU X, et al. In situ formed TiB₂/TiC complex structure in laser-alloyed coatings with improved wear property [J]. Ceramics International, 2022, 48 (5): 7056–7062.
- [16] BAI Q, ZHANG J, LI Q, et al. Microstructure and corrosion resistance of Fe-based coatings prepared using high-speed laser cladding and powerful spinning treatment [J]. Materials Letters, 2022, 310: 131429.1–131429.3.
- [17] 郭永明, 叶福兴, 祁航. 超高速激光熔覆技术研究现状及发展趋势 [J]. 中国表面工程, 2022, 35(6): 39-50.
- [18] YUAN W, LI R, CHEN Z, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings [J]. Surface and Coatings Technology, 2021, 405: 126582.1–126582.13.
- [19] 李朝晖,李美艳,韩彬,等.高压柱塞高速激光熔覆镍基合金涂层组织和耐磨性 [J]. 表面技术, 2020, 49(10): 45-54.
- [20] YANG J, BAI B, KE H, et al. Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding [J]. Optics & Laser Technology, 2021, 144: 107431.1–107431.10.
- [21] YAN Q, YANG K, WANG Z D, et al. Surface roughness optimization and high-temperature wear performance of H13 coating fabricated by extreme high-speed laser cladding [J]. Optics and Laser Technology, 2022, 149: 1–10.
- [22] PORIA S, SAHOO P, SUTRADHAR G. Tribological characterization of stir-cast aluminium-TiB₂ metal matrix composites [J]. Silicon, 2016, 8 (4) : 591–599.
- [23] TRAN V N, YANG S, PHUNG T A. Microstructure and properties of Cu/TiB₂ wear resistance composite coating on H13 steel prepared by in-situ laser cladding [J]. Optics & Laser Technology, 2018, 108: 480–486.
- [24] 李百奇,汤文博,王笑生.等离子熔覆高钒铁基合金涂层耐冲击磨料磨损的研究 [J].铸造,2022,71 (4):409-414.
- [25] 邱伟男,周东帅,王健,等. 纳米TiC颗粒增强Al-Cu-Li基复合材料摩擦磨损性能的研究 [J]. 铸造,2023,72(4):401-408.
- [26] 郑博文,袁晓光,董福宇,等.La₂O₃含量对(TiC+TiB)/IMI834复合材料组织及耐磨性的影响[J].铸造,2021,70(8):933-938.
- [27] 陈胜迁,龙骏,邓超,等. Al含量对Fe-Cr耐磨合金钢组织与性能的影响 [J]. 铸造,2018,67(8): 673–677.
- [28] SHENG L Y, YANG F, XI T F, et al. Investigation on microstructure and wear behavior of the NiAl–TiC–Al₂O₃ composite fabricated by self-propagation high-temperature synthesis with extrusion [J]. Journal of Alloys and Compounds, 2013, 554: 182–188.

Friction and Wear Properties of FeAl-TiB₂ Composite Coating Produced by Extreme High-Speed Laser Cladding

ZHI Jun-min¹, WANG Shi-qiang¹, ZHANG Kui¹, MOU Guang-qiang¹, PAN Guang-hao², LI Xiang², CUI Yidan², CHI Xin-yu², YUAN Jian-jun²

(1. Shandong Dongfang Engineering Co., Ltd., Zibo 255120, Shandong, China; 2. College of Intelligent Equipment, Shandong University of Science and Technology, Taian 271001, Shandong, China)

Abstract:

To improve the friction and wear performance of FeAl-based composite coatings at high temperatures (600 °C), different FeAl-TiB₂ composite coatings with varying TiB₂ mass fractions were in situ prepared on the surface of 32Cr3Mo1V steel using an ultra-fast laser cladding process, with Fe powder, Al powder, and TiB₂ powder as the raw materials. The phase composition, microstructure and wear mechanism of the composite coating were studied. The results showed that the in-situ composite coating formed a good metallurgical bond with the substrate. With the increase of the mass fraction of TiB₂, the coating surface became denser, and the remelted TiB₂ was distributed on the surface of the composite coating in the form of grid. The TiB₂ reinforced phase can withstand the compressive stress and shear force during the friction process, which effectively improves the wear resistance of the composite coating are the lowest, and the wear resistance is the best. With the increase of the mass fraction of TiB₂, the wear mode gradually changes from plastic deformation to abrasive wear, accompanied by oxidation wear.

Key words:

FeAl-TiB₂ coating; in situ synthesis; extreme high-speed laser cladding; wear resistance; wear mechanism