基于熵值法的铝合金缸体低压 铸造工艺多目标优化

邓 伟¹,宋仲模¹,雷基林¹,罗 坤¹,徐远志²,张 勇³

(1. 昆明理工大学云南省内燃机重点实验室,云南昆明 650500; 2. 昆明云内动力股份有限公司,云南昆明 650224;3. 成都正恒动力股份有限公司,四川成都 610500)

摘要:基于有限元软件ProCAST构建某型铝合金缸体的有限元模型,设计L₁₆(4⁴)正交试验 方案,探究了浇注温度、模具预热温度、充型时间、保压压力四个工艺参数对凝固时间和缩 松体积的影响。采用熵值法分别计算两个评价指标的权重,将凝固时间与缩松体积转化为综 合评分值进行单目标优化。通过极差分析与方差分析,得到了各参数对综合评分的影响程 度为:浇注温度(A)>模具预热温度(B)>保压压力(D)>充型时间(C),确定了最优 的工艺参数为A1B2C1D3。对比原工艺参数方案和优选工艺参数方案发现:凝固时间缩短了 20.35%,缩松体积下降了2.96%。经生产试验,缸体铸件外观质量良好,无明显铸造缺陷, 验证了最佳工艺参数的合理性。

关键词:铝合金缸体;低压铸造;正交试验;熵值法;多目标优化

随着汽车产业的不断发展,我国的民用汽车保有量呈现逐年上升的趋势,但是 在汽车产业高速发展的同时也给环境带来了严重的污染^[1-2]。在2020年,于永初等^[3]进 一步研究确定了全球汽车技术"低碳化"的发展方向。在此大背景下,越来越多的 汽车行业逐渐开始提倡轻量化发展,由于铝合金发动机缸体具有散热好和质量轻的 优点,因此,铝合金发动机缸体受到了越来越多的关注^[4-5]。

对于生产发动机缸体,目前主要采用重力铸造、低压铸造、冷芯盒组芯造型 等铸造工艺。低压铸造工艺与其他铸造工艺有着明显的区别,其压力数值较小,所 以在铸造中可以使用砂芯,并且有着较高的成品率和利用率,在应用低压铸造工艺 时,整个浇注过程比较稳定,不会出现金属液紊流等相关问题^[6-9]。然而,对于发动 机缸体铸造工艺参数,主要是依靠不断的试模和日积月累的经验来确定^[10],投入的 成本较高,生产效率较低,并且难以保证铸件质量。

为了提高发动机缸体的生产效率,降低投入的成本,以达到提高铸件质量的目标,本文设计L₁₆(4⁴)正交试验方案,利用有限元软件ProCAST对发动机缸体低压铸造进行仿真分析,采用熵值法将凝固时间与缩松体积转化为综合评分值进行单目标优化。通过极差分析法与方差分析法确定最优工艺参数组合,为发动机缸体的低压铸造生产提供理论支持。

1 有限元模型的建立

1.1 研究对象

选择某型柴油机铝合金缸体作为研究对象,其铸造三维图如图1所示。铸件材料为基于ZL109改良的Al-Si-Cu系铝合金,该合金通过调整Cu含量来实现力学性能的增强,以满足发动机功率密度的提升对材料性能的要求,其材料的主要化学成分如表1 所示,铸件重15.573 kg,缸筒内径81 mm,外形尺寸为250 mm×312.5 mm×313.83 mm。

作者简介:

邓伟(1976-),男,教授 级高工,硕士生导师,主 要研究方向为车辆动力关 键零部件材料与制造工艺。 E-mail: 1323364897@163. com 通讯作者: 雷基林,男,教授,博 士,博士生导师。电话: 13708804651,E-mail: leijilin@kmust.edu.cn

中图分类号:TG24 文献标识码:A 文章编号:1001-4977(2024) 06-0753-09

基金项目: 云南省科技厅重大科技专项 计划(202202AB080011)。 收稿日期: 2023-11-03收到初稿, 2023-12-25收到修订稿。 754 (持造 FOUNDRY 有色合金

另外要求铸件不允许出现冷隔、裂纹、浇不足、严重 粘砂、缩孔、穿透性等缺陷。

Fig. 1 3D model of an engine block

表1 铸件材料的化学成分 Table 1 Chemical composition of casting materials

						D. D.
Si	Cu	Ni	Mg	Zn	Zn	Al
12.0	2.0~3.0	1.0~2.0	0.5~1.0	≤0.2(杂质)	≤0.01(杂质)	余量

1.2 铸造仿真模型的建立

基于有限元软件ProCAST,对某型发动机缸体铸件进行仿真分析。采用建模软件UG创建缸体及浇注系统的三维模型,将发动机缸体铸件、浇注系统、冷铁等在UG软件里进行装配,装配完成后将其保存为igs格式,导入前处理软件Hypermesh中进行面网格的划分,把划分好的面网格导入meshcast中划分体网格,总共划分出2 125 741个网格,其中面网格374 476个、体网格1751 265个。发动机缸体的有限元模型如图2所示。

图2 发动机缸体的有限元模型 Fig. 2 Finite element model of the engine block

1.3 低压铸造数值模拟的参数设定

在网格划分结束之后,则进入Visual-Cast 模块设置相应的边界条件与初始条件。对于充型方式设置为

反重力充型,模具材料为树脂砂,将空冷作为冷却方 式^[11-12],对砂箱的外表面进行冷却处理。其铸造参数 设定如表2所示。基于ProCAST软件可以计算得到相应 的热物性参数,包括热导率、热焓、粘度以及固相分 数,如图3所示。

表2 模拟参数设定 Table 2 Simulation parameters

参数	数值
模具预热温度/℃	80
浇注温度/℃	720
充型时间/s	20
位移步长/mm	0.5
保压压力/kPa	40
密度/ (g·cm ⁻³)	2.678
杨氏模量/GPa	75
泊松比	0.322 2
铸件与模具之间的换热系数/(W·m ⁻² ·K ⁻¹)	500
铸件与冷铁之间的换热系数(W·m ⁻² ·K ⁻¹)	2 000

2 低压铸造工艺参数正交试验结果

2.1 正交试验设计

正交试验设计方法是通过正交表科学地挑选试验 条件,合理安排试验的方案,再利用极差和方差的数 学思想对试验的结果进行分析,从而获得最佳参数组 合方案^[13]。根据相关研究,选择凝固时间和缩松体积 作为评价指标,选取浇注温度A、模具预热温度B、充 型时间C、保压压力D四个工艺参数作为正交试验因 素,并对每个因素分别选取四个水平。以此研究不同 因素组合对低压铸造过程中铸件凝固时间与缩松体积 的影响规律。正交试验各因素水平如表3所示。

表3 因子水平设计 Table 3 Factor level design

₩₩		Ē	因素	
小十	A/°C	B/°C	C/s	D/kPa
1	690	20	10	40
2	700	40	15	50
3	710	60	20	60
4	720	80	25	70

以原工艺参数方案,即浇注温度为700 ℃、模具预 热温度为80 ℃、充型时间为20 s、保压压力50 kPa为参 考。根据表3可知,一共有4个因子,每个因子有4个水 平,因此选择4因子4水平L₁₆(4⁴)的正交表。正交试 验方案如表4所示。

图3 热物性参数 Fig. 3 Thermophysical parameters

表4 正交试验方案 Table 4 Orthogonal test scheme

皮旦		I	因素	
厅写	A/℃	B/°C	C/s	D/kPa
1	690	20	10	40
2	690	40	15	50
3	690	60	20	60
4	690	80	25	70
5	700	20	15	60
6	700	40	10	70
7	700	60	25	40
8	700	80	20	50
9	710	20	20	70
10	710	40	25	60
11	710	60	10	50
12	710	80	15	40
13	720	20	25	50
14	720	40	20	40
15	720	60	15	70
16	720	80	10	60

2.2 正交试验结果处理与分析

基于有限元软件ProCAST,对16种方案分别进行 数值模拟,得到模拟后的凝固时间值与缩松体积值, 各方案数值模拟计算结果如表5所示。以试验序号为横 坐标,评价指标为纵坐标,构建铸件各指标的正交试 验值图,如图4所示。从直接优化角度分析,对于凝固 时间,第1组的数值模拟结果最小,为555.8 s;对于缩 松体积,第12组的数值模拟结果最小,为111.14 cm³。

3 熵值法

在铸件的低压铸造过程中,凝固时间和缩松体积 是两个重要的结果参数,其可以反映出铸件的质量和 性能。凝固时间越短,缩松体积越小,则铸件的生产 周期越短,生产效率就越高,且铸件晶粒尺寸越小以 及致密性越好^[14-15],将二者进行多目标优化,需要使用 熵值法,通过计算各指标的熵值来确定权重系数,将 凝固时间与缩松体积转化为综合评分值进行单目标优 化,同时获得较小的凝固时间和缩松体积。熵值法是 一种将数学和统计相联系,广泛应用于多目标优化的 方法。若某指标的变化程度越大,则所对应的熵值就 756 转进 FOUNDRY 有色合金

它旦		因素			将国时间/。	
厅与	A/℃	B/°C	C/s	D/kPa	供自时间75	21日74574547547C111
1	660	20	10	40	555.8	113.25
2	660	40	15	50	604.4	112.83
3	660	60	20	60	707.7	112.40
4	660	80	25	70	719.1	112.79
5	680	20	15	60	583.8	113.37
6	680	40	10	70	613.4	112.81
7	680	60	25	40	624.8	113.55
8	680	80	20	50	759.7	112.80
9	700	20	20	70	566.1	113.19
10	700	40	25	60	595.8	113.62
11	700	60	10	50	725.1	112.38
12	700	80	15	40	798.7	111.14
13	720	20	25	50	660.9	111.99
14	720	40	20	40	636.6	112.15
15	720	60	15	70	639.3	112.53
16	720	80	10	60	679.2	112.87

表5 正交试验结果 Table 5 Orthogonal test results

越小,指标的离散程度越大,权重系数就越小[16-18]。

通过熵权法进行多目标优化包括三个步骤:数据 规范化、计算熵值与权重,最后获得综合评分。其所 涉及的计算公式如下^[19-21]:

$$\lambda_{i}^{*} = \frac{\lambda_{i\max} - \lambda_{i}}{\lambda_{i\max} - \lambda_{i\min}}$$
(1)

$$E_{j} = -\frac{1}{\ln(m)} \sum_{i=1}^{m} \frac{\lambda_{i}^{*}}{\sum_{i=1}^{m} \lambda_{i}^{*}} \ln \frac{\lambda_{i}^{*}}{\sum_{i=1}^{m} \lambda_{i}^{*}}$$
(2)

$$w_{j} = \frac{1 - E_{j}}{\sum_{j=1}^{n} (1 - E_{j})}$$
(3)

$$S_i = \sum_{j=1}^{2} Y_{ij} w_j$$
 (4)

式中: λ^*_i 为第*i*次试验的规范化结果; λ_i 为第*i*次试验的 试验结果; λ_{imax} 为所有试验结果中的最大值, λ_{imin} 为所 有试验结果中的最小值;*m*为试验次数,*m*=16;*E*_j为目 标的熵值;*w*_j为目标权重;*n*为评价指标数,*n*=2;*S*_i为 综合评分。将正交试验结果分别按照公式(1)-(4) 进行计算,得到凝固时间与缩松体积的熵值、权重以

图4 各指标正交试验值 Fig. 4 Orthogonal test values for each indicator

及综合评分。计算结果如表6所示。

对表6所得的综合评分值进行极差分析。极差分析 法具有简单、直观的特点,可以得到各因素对评价指 标的影响趋势,根据公式(5)-(7)进行极差计算^[223], 所得结果如表7所示。为了更加直观地显示各因素水 平对评价指标综合评分的影响,将因素水平作为横坐 标,综合评分作为纵坐标,得到如图5所示的综合评分 主效应图。

$$\overline{K_i} = \sum_{k=1}^{m} Y_{m,k} \tag{5}$$

$$K_i = \frac{1}{m}\overline{K} \tag{6}$$

 $R_{j}=\max\{K_{1}, K_{2}, \cdots\}-\min\{K_{1}, K_{2}, \cdots\}$ (7)

式中: $Y_{m,k}$ 为m水平下第k个指标试验结果值; \bar{K}_i 为各因 素在i水平下的试验结果之和; K_i 为 \bar{K}_i 的平均值;m为水 平数,m=4;k为评价指标数,k=2; R_i 为极差。

由表7和图5可知,在所考察的四个因素中对综合 评分影响的顺序由大到小为:浇注温度(A)>模具预 热温度(B)>保压压力(D)>充型时间(C)。可以 确定最佳参数组合方案为A1B2C1D3,即浇注温度为

		凝固时间/s			缩松体积/cm ³		
17 5	λ_i^*	E_j	W_{j}	λ_i^*	E_j	W_{j}	- 坏百斤刀
1	1			0.149 194			370.814
2	0.799 918			0.318 548			398.924
3	0.374 64			0.491 935			427.034
4	0.327 707			0.334 677			455.144
5	0.884 726			0.100 806			483.254
6	0.762 865			0.326 613			511.364
7	0.715 932			0.028 226			539.474
8	0.160 56	0.869 06	58.20%	0.330 645	0.90 596	41.80%	567.584
9	0.957 596			0.173 387			595.694
10	0.835 323			0			394.249
11	0.303 005			0.5			468.983
12	0			1			511.300
13	0.567 312			0.657 258			431.456
14	0.667 353			0.592 742			417.380
15	0.656 237			0.439 516			419.110
16	0.491 972			0.302 419			442.474

表6 各指标的综合评分值 Table 6 Composite scoring values for each indicator

表7 综合评分极差分析 Table 7 Comprehensive scoring range analysis

评价指标	因素	А	В	С	D		
	K_1	413.0	470.3	448.4	459.7		
	K_2	525.4	430.5	453.1	466.7		
	K_3	492.6	463.7	501.9	436.8		
综合评分	K_4	427.6	494.1	455.1	495.3		
	极差	112.4	63.6	53.5	58.6		
	排秩	1	2	4	3		
主次师它	浇注温度(A)>模具预热温度(B)>						
主仸顺庁	保压压力(D)>充型时间(C)						
最优参数	数 A1B2C1D3						

690 ℃、模具预热温度为40 ℃、充型时间为10 s、保压 压力为60 kPa。

由于极差分析不能对误差大小进行估计,并且 也不能指出各因数与其交互作用的显著性,所以需要 对综合评分进行方差处理与分析^[24],根据公式(8)-(11)进行方差计算,方差处理结果如表8所示。

$$S_T = \sum_{i=1}^{n} (Y_{m, k} - Y)^2$$
 (8)

$$f = m - 1 \tag{9}$$

$$S = \frac{S_T}{f} \tag{10}$$

$$F = \frac{S}{S_E} \tag{11}$$

图5 综合评分主效应图 Fig.5 Composite scoring main effect plot

表8 综合评分方差分析 Table 8 Analysis of variance for comprehensive scoring

方差来源	偏差平方和	自由度	均方差	F值	显著性
А	34 055	3	11 352	5.05	
В	8 278	3	2 759	1.23	
С	7 508	3	2 503	1.11	$F_{0.05}(3, 15) = 3.29$
D	6 991	3	2 330	1.04	
残差误差	6 746	3	2 249		
合计	63 579	15			
<u>.</u>					

注: F_{0.05} (3, 15) 由查表得到。

758 括告 FOUNDRY 有色合金

式中: S_{T} 为总偏差平方和; $Y_{m,k}$ 为m水平下第k个指标试验结果值; Y为各因素在m水平下第k个指标的试验结果之和的平均值; m为因素的水平数, m=4; f为自由度; S为因素均方差; S_{k} 残差误差均方差; F为方差分析中的F值。

将计算所得的F值与查表所得的显著性水平的临界 值进行比较,若F值越大,则表示因素对评价指标的影 响越大^[25]。由表8综合评分的方差分析结果可以看出, F_A=5.05>F_{0.05}(3,15)=3.29,表明,浇注温度对综合 评分的影响是显著的;模具预热温度、充型时间以及 保压压力的F值分别为1.23、1.11以及1.04,均小于临 界值,表明三个参数对综合评分的影响均不是特别明 显。该结论与极差分析结果一致,进一步验证了最优 方案的正确性。

4 优选方案数值模拟分析与生产 验证

4.1 优选方案数值模拟结果分析

优选方案选择最佳参数组合A1B2C1D3,即浇注 温度690 ℃、模具预热温度40 ℃、充型时间10 s、保 压压力60 kPa。原工艺参数方案为浇注温度700 ℃、模 具预热温度80 ℃、充型时间20 s、保压压力50 kPa, 即A2B4C1D3。利用ProCAST对某型铝合金缸体在两 种方案下分别进行模拟分析。将优化方案A1B2C1D3 和原有工艺方案A2B4C3D2的数值模拟结果进行对 比。图6a、b是A2B4C3D2和A1B2C1D3的凝固时间对 比;图7a、b是A2B4C3D2和A1B2C1D3的铸件缺陷对 比。

(a) A2B4C3D2

(b) A1B2C1D3

图6 不同方案下的凝固时间对比 Fig. 6 Comparison of solidification time under different schemes

Fig. 7 Comparison of prediction results of shrinkage and shrinkage holes under different schemes

如图6所示为不同方案下的凝固时间对比云图,其 不同方案下凝固时间结果对比见表9。由表9可知,原 工艺参数方案下凝固时间为759.7 s,优选方案下凝固时 间为605.1 s,凝固时间有较大幅度减少,比原工艺参数 下的凝固时间缩短了20.35%。

表9 不同方案下凝固时间对比 Table 9 Comparison of solidification time under different schemes

不同方案	凝固时间/s
A2B4C3D2	759.7
A1B2C1D3	605.1

图7所示为不同方案下缩松、缩孔预测云图对比, 其不同方案下缩松体积对比见表10。由表10可知,原 工艺参数下缩松体积为112.80 cm³,优选方案下的缩松 体积为109.46 cm³,经优化之后,铸件的缩孔、缩松缺 陷倾向有一定程度减少,比原工艺参数下的缩松体积 下降了2.96%。经仿真模拟可知,优化的工艺参数定为

表10	不同方案下缩构	松体积对比
Table 10 Comparis	on of shrinkage	e volume under different
	schemes	

缩松体积/cm ³	
112.80	
109.46	
	缩松体积/cm ³ 112.80 109.46

浇注温度690 ℃、模具预热温度40 ℃、充型时间10 s、 保压压力60 kPa是合理的。

4.2 生产验证

4.2.1 缸体铸件外观质量分析

采用最佳工艺参数方案进行发动机缸体试制,验 证最佳工艺参数的合理性与铸件质量。图8为发动机 缸体铸件图,对其进行观察,在铸件表面未发现浇不 足、冷隔、缩孔、严重粘砂与裂纹、穿透性等缺陷, 外观质量良好,能够满足后续机械加工的要求,达到 GB/T 9438—2013对铸件表面质量的要求。

图8 发动机缸体铸件 Fig. 8 Engine block castings

4.2.2 缸体铸件CT检测

对试制好的发动机缸体铸件进行CT检测,检测结 果如图9所示,在缸孔的四周以及局部薄壁处均未出现 超过标准的缩孔、缩松缺陷,在缸体铸件内部存在一 定的细小针孔以及一些微量缩松,这与仿真结果基本 吻合,达到GB/T9438—2013对铸件内部质量的要求, 验证了最佳工艺参数的合理性。

5 结论

(1)基于ProCAST构建某型铝合金缸体的有限元 模型,选用L₁₆(4⁴)正交试验表进行四因素四水平正 交试验设计,对柴油机铝合金缸体低压铸造过程进行 有限元分析。针对多目标优化,通过熵值法将凝固时 间和缩松体积优化转化为综合评分目标值优化。

(2)通过对综合评分进行极差分析与方差分析, 得到了各参数对综合评分的影响程度为:浇注温度 (A)>模具预热温度(B)>保压压力(D)>充型时间 (C),确定了最优的工艺参数为A1B2C1D3,即浇注 温度690℃、模具预热温度40℃、充型时间10s、保压 压力60kPa。

(3)采用优选工艺参数方案进行发动机缸体低压 铸造仿真分析,与原工艺方案进行对比发现:凝固时 间由759.7 s降低至605.1 s,缩短了20.35%;缩松体积由 760 16世 FOUNDRY 有色合金

图9 缸体铸件CT检测结果 Fig. 9 CT inspection results of cylinder block castings

112.80 cm³降至109.46 cm³,下降了2.96%。经过生产试验验证,缸体铸件外观质量良好,无明显铸造缺陷,

验证了最佳工艺参数的合理性。该研究可为发动机缸 体的低压铸造生产提供理论支持。

参考文献:

- [1] 陈川川,苏小平,周大双,等. 铝合金转向节差压铸造工艺参数的优化 [J]. 热加工工艺,2020, 49(13):54-57.
- [2] 孙冬恩,程和法,周宏伟,等.低压铸造铝合金轮毂的数值模拟及工艺优化[J].特种铸造及有色合金,2020,40(7):763-767.
- [3] 于永初.《节能与新能源汽车技术路线图2.0》引领中国汽车产业发展[J].汽车工艺师,2020(11):3.
- [4] 孙启才. 真空度及热处理对压铸件微观组织及力学性能的影响研究 [D]. 重庆: 重庆大学, 2022.
- [5] 张殿杰,刘建芳,王星,等.轻量化枝杈轮辐铝合金轮毂低压铸造成形有限元模拟及试验分析 [J].铸造,2020,69(10):1098-1103.
- [6] ARULRAJ M, PALANI P K, SOWRIRAJAN M. Optimization of squeeze casting parameters of hybrid aluminium matrix composite using Taguchi approach [J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235 (4): 1073–1081.
- [7] 魏剑,吴龙,许华聪. 铝缸体压力铸造数值模拟分析 [J]. 热加工工艺, 2020, 49(13): 66-69+72.
- [8] 梁秋华,韩伟,黄凌森,等.水冷机壳低压铸造凝固过程数值模拟及工艺优化[J].铸造,2019,68(4):353-358.
- [9] 刘士渊,杨成龙,黄雪枫,等.基于3D打印技术的气缸盖自补缩低压铸造工艺优化研究 [J].铸造,2022,71 (10):1295-1298.
- [10] 李姝,周纪委,王明伟,等.基于熵权法的汽车左侧前保险杠注塑成型工艺参数优化 [J]. 塑料科技,2023,51(7):80-84.
- [11] LIU X, HAO Z, HUANG M. Optimization of vacuum counter-pressure casting process for an aluminum alloy casing using numerical simulation and defect recognition techniques [J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 2783– 2795.
- [12] 黄斌,林升垚,毛晓峰,等.42CrMo钢曲轴连杆颈磁痕显示的成因分析 [J].金属热处理,2020,45(4):224-229.
- [13] 邓伟,何葛豪,贾德文,等. 基于正交实验的TC4钛合金连杆锻造工艺参数影响研究 [J]. 锻压技术,2023,48(8):1–10.
- [14] 张井柱,翁月宏.铝合金铸造工艺的Metropolis准则蜂群算法优化 [J]. 机械设计与制造, 2021 (8): 240-245.
- [15] 陈席国,杨胡坤,陈宇,等.复杂高锰钢件铸造工艺优化 [J].铸造,2018,67 (11):1037-1041.
- [16] 王晓东,王权,陈拓,等. 基于灰色关联分析和熵权法的双色注塑多目标参数优化 [J]. 中国塑料,2022, 36(7): 115-120.
- [17] 李姝,周纪委,王明伟,等. 基于熵权法的汽车左侧前保险杠注塑成型工艺参数优化 [J]. 塑料科技,2023,51(7): 80–84.
- [18] LI L, CI T, YANG X, et al. Entropy method of determining the attribute weights of interval numbers based on relative superiority [J].

Journal of Computational Methods in Sciences and Engineering, 2021, 21 (5): 1105–1112.

- [19] CAI K, WANG D. Optimizing the design of automotive S-rail using grey relational analysis coupled with grey entropy measurement to improve crashworthiness [J]. Structural and Multidisciplinary Optimization, 2017, 56: 1539–1553.
- [20] WANG D, JIANG R, WU Y. A hybrid method of modified NSGA-II and TOPSIS for lightweight design of parameterized passenger car sub-frame [J]. Journal of Mechanical Science and Technology, 2016, 30: 4909–4917.
- [21] 蒋荣超,刘大维,王登峰.基于熵权TOPSIS方法的整车动力学性能多目标优化 [J]. 机械工程学报, 2018, 54 (2): 150-158.
- [22] 孙洁,蔡建国,葛新峰,等. 基于正交试验多目标的两叶片灯泡贯流式水轮机性能优化 [J]. 中国电机工程学报,2022, 42(9): 3317–3327.
- [23] YANG Y, ZHOU L, ZHOU H, et al. Optimal design of slit impeller for low specific speed centrifugal pump based on orthogonal test [J]. Journal of Marine Science and Engineering, 2021, 9 (2) : 121.
- [24] 刘建鹏,王震虎,林启权,等.基于正交试验的铝代钢冲压成形工艺参数优化 [J]. 塑性工程学报, 2018, 25 (5): 110-116.
- [25] 梁敏富,方新秋,陈宁宁,等.正交试验设计的FBG测力锚杆结构封装优化及应用[J].煤炭学报,2022,47(8):2950-2960.

Multi-Objective Optimization of Low-Pressure Casting Process of Aluminum Alloy Cylinder Block Based on Entropy Method

DENG Wei¹, SONG Zhong-mo¹, LEI Ji-lin¹, LUO Kun¹, XU Yuan-zhi², ZHANG Yong³

(1. Yunnan Provincial Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; 2. Kunming Yunnei Power Co., Ltd, Kunming 650224, Yunnan, China; 3. Chengdu Zhengheng Power Co., Ltd, Chengdu 610500, Sichuan, China)

Abstract:

Based on the finite element software ProCAST to construct the finite element model of a certain type of aluminum alloy cylinder block, the $L_{16}(4^4)$ orthogonal test scheme was designed, and the influences of four process parameters of pouring temperature, mold preheating temperature, filling time and holding pressure on solidification time and shrinkage volume were explored. The entropy method was used to calculate the weights of the two evaluation indexes, and the solidification time and shrinkage volume were converted into comprehensive scoring values for single-objective optimization. Through range analysis and ANOVA, the influence of each parameter on the comprehensive score was obtained: pouring temperature (A)>mold preheating temperature (B)>holding pressure (D)>filling time (C), and the optimal process parameters were determined as A4B4C4D1. Compared with the original process parameter scheme and the preferred process parameter scheme, it was found that the solidification time shortened by 20.35%, and the shrinkage volume decreased by 2.96%. After the production test, the appearance quality of the cylinder casting was good, and there were no obvious casting defects, which verified the rationality of the optimal process parameters.

Key words:

aluminum alloy cylinder block; low pressure casting; orthogonal test; entropy method; multi-objective optimization