真空铜模吸铸 TiAI 基合金凝固行为

柳 翊1, 闵志宇1, 李晓磊2, 安俊超1, 张 伟1

(1. 洛阳理工学院材料科学与工程学院,河南洛阳 471023; 2. 西北工业大学凝固技术国家重点实验室, 陕西西安 710072)

摘要:采用真空铜模吸铸技术成功制备了Ti-45Al-2Cr-2Nb合金铸件。借助扫描电镜(SEM)、能谱(EDS)及X射线衍射仪(XRD)分析铸态和吸铸条件下显微组织形貌特征、各相成分以及相组成,并且和铸态组织进行了比较研究。结果表明:铸态和吸铸凝固组织的主要相组成均为 α_2 相和 γ 相。铸态显微组织观察与Al当量计算结果一致,铸态Ti-45Al-2Cr-2Nb合金是以 β 为初生相的单一 β 相凝固合金;吸铸糊状区凝固组织明显细化,晶粒尺寸由244 μ m细化至96 μ m,同时降低了凝固偏析,呈现胞状枝晶形貌,枝晶干上存在白色脉络状的 β 型偏析和残余的条状 α 相,在表面急冷区观察到块状 γ 相(γ m)和羽毛组织(γ f),块状 γ m相区域的厚度约为62 μ m。

关键词: 吸铸; Al当量; 初生相; 凝固偏析; 晶格畸变

作者简介:

柳 翊(1981-), 男,博士,讲师,主要研究方向为合金非平衡凝固和铸造及其组织演化。E-mail:lyapplely@126.com通讯作者:

闵志宇,男,博士,教授。 E-mail: mindayu@163.com

中图分类号: TG146.2 文献标识码: A

文章编号: 1001-4977 (2019)

05-0475-04

基金项目:

河南省教育厅高等学校重点科研项目 (13A130790);河南省高等学校青年骨干教师资助计划项目(2015GGJS-109);洛阳理工学院高层次人才科研启动项目(2017BZ05)。收稿日期:

2018-12-09 收到初稿, 2019-02-19 收到修订稿。 γ -TiAl基合金因具有低密度、高弹性模量、良好的抗蠕变和抗氧化以及高温强度等性能备受广大学者的关注,但该合金的室温塑性较低 $^{[1:3]}$ 。为了满足TiAl基合金对更高性能的需求,合金成分研发趋向于多元化和微合金化设计。目前以包晶Ti-48Al-2Cr-2Nb合金为代表的第二代TiAl基合金是成功获得工程化应用的多元化TiAl基合金 $^{[2]}$,并在650 $^{\circ}$ C工况条件下成功服役。第三代合金的设计中Nb元素的添加成为研究的焦点, β 相稳定元素Nb能使TiAl合金相图向高Al和高温方向偏移,同时扩大了 β 相区并缩小了 α 相区 $^{[4]}$,最终改变合金的凝固路径和凝固组织特征。此外,值得注意的是冷却速率也是合金凝固的重要参数之一。TiAl基合金凝固组织对冷却速率又极其敏感,薄壁铸件的薄弱部位或铸件边缘部位的冷却速率会极高,凝固组织呈现出一定的复杂性和多样性,这对铸件质量和性能造成一定程度的影响 $^{[5]}$ 。

因此,本研究采用真空铜模吸铸技术成功制备了Ti-45Al-2Cr-2Nb合金棒状试样($\Phi6~mm \times 80~mm$)。研究铸态Ti-45Al-2Cr-2Nb合金凝固路径和显微组织特征以及相组成;结合吸铸棒状试样的凝固组织和相组成分析,阐明冷却速率对Ti-45Al-2Cr-2Nb合金凝固组织特征影响机制。

1 试验方法

所用合金的名义成分为Ti-45Al-2Cr-2Nb(at.%,下同)。原材料采用高纯Ti板(99.99wt%)、高纯铬块(99.99wt%)、高纯Al锭(99.99wt%)和高纯Ti52.7Nb(99.99wt%)屑。所得合金钮扣铸锭在真空非自耗电弧炉中熔配而成,重量约30 g。为了减少成分偏析和不均匀,铸锭需反复熔炼3次以上,制备过程中铸锭质量损失小于0.3%,保证了实际成分和名义成分一致。真空吸铸试验在图1所示的真空铜模吸铸设备中进行,获得小型棒状吸铸试样尺寸为 Φ 6 mm × 80 mm。所得试样从纵截面剖开,随后进行预磨、抛光和腐蚀,腐蚀剂为:10 mL HNO₃+10 mL HF+80 mL H₂O。采用KYKY-2800型扫描电镜(SEM)对试样的显微组织进行观察分析,并采用扫描电镜所配备的能谱分析仪(EDS)对试样不同区域的元素分布进行分析。借助X射线衍射(XRD)对试样的显微组织和相组成进行深入分析。

试验结果与讨论 2

2.1 铸态凝固组织

图2为铸态钮扣锭Ti-45Al-2Cr-2Nb合金凝固组织。 图2a为低倍铸态Ti-45Al-2Cr-2Nb合金凝固组织形貌, 呈现出明显的枝晶偏析,而枝晶上存在白色脉络状的 相。图2b为高倍铸态Ti-45Al-2Cr-2Nb合金凝固组织形 貌,枝晶上白色脉络状的相清晰可见,同时能够观察 到明显的片层结构 ($\alpha_2 + \gamma$),该凝固组织形貌具有典 型的单一β相凝固特征。EDS分析结果表明: 枝晶间的 偏析进行能谱分析, Al含量明显偏高(47.27at.%), 而枝晶上存在白色脉络状的相AI含量明显偏低(42.90 at.%),其中Cr元素和Nb元素也稍高于合金的名义成 分,如表1所示。综上所述,铸态Ti-45Al-2Cr-2Nb合金 是以β为初生相的单一β相凝固合金。

2.2 AI 当量计算

β相稳定元素添加会造成二元TiAl相图向高温和 高AI方向偏移,AI当量计算是对多元TiAI基合金进行凝 固路径和凝固组织分析的有效手段,通过β相稳定元 素和 α 相稳定元素的量等价为AI的量,即为AI当量 $^{[6]}$, 计算方法见式(1):

 $C_{\text{Al}}^{"} = C_{\text{Al}} - \left(a X_{\text{Al-eq}} + b Y_{\text{Al-eq}} + c Z_{\text{Al-eq}} + \cdots \right)$ (1) 式中: C_{Al} " 是Al当量, C_{Al} 是多元TiAl合金中实际所含 Al的原子比,a、b和c对应于X、Y和Z元素在多元TiAl 合金中的成分, X_{Al-ea} 、 Y_{Al-ea} 和 Z_{Al-ea} 是各元素等价的Al当 量,其中Cr的A1当量是+0.1^[7],Nb的A1当量是+0.3^[7]。

依据式(1), Ti-45Al-2Cr-2Nb合金的Al当量为: C_{Al} " =45%- (2×0.1)%- (2×0.3)%=44.2%。依据 二元相图可知,铸态Ti-45Al-2Cr-2Nb合金是以β为初 生相的单一β相凝固合金,这与显微组织观察的结果 基本一致,计算过程中所产生的误差是因Cr和Nb元素 的Al当量所致。

2.3 真空吸铸凝固组织

图3为真空吸铸Ti-45Al-2Cr-2Nb合金(Φ 6 mm× 80 mm)棒状试样的凝固组织。与铸态凝固相比,图

3a吸铸凝固组织明显细化,呈典型的胞状晶形貌,也 存在明显的枝晶偏析,晶粒尺寸为96 μm。同时枝 晶上存在白色脉络状相更为细小。图3b为高倍的吸铸 凝固组织形貌,残余细化的白色脉络状相仍清晰可 见,同时在枝晶边沿也能够观察到少量的片层结构 $(\alpha_2 + \gamma)$ 。此外,值得注意的是在枝晶主干上发现残 余的条状 α 相,但并未观察到片层结构 ($\alpha_2 + \gamma$), 该相是由快速冷却过程中初生β相向α相转变未完全 所致,高的冷却速率也一定程度上抑制了片层结构 (α₂+γ)的形成。Kastenhuber M等人^[8]研究结果也验 证了在快速冷却过程中 $\beta \rightarrow \alpha$ 反应过程中存在残余的 α相。图3c为吸铸表面急冷区凝固组织形貌。值得注 意的是在表面急冷区观察到块状 γ 相(γ ,,) 形成, 块 状 γ "相区域的厚度约为62 μ m。随着距离表面急冷区 增大,冷却速率有所减低,该区域存在大量的羽毛组 织 (γ_f) 和少量的 γ_m 相,这表明在快速凝固过程中, 表面急冷区受到铜模强烈的急冷作用引起新相变的发 生。冷却速率提高,引起起始过冷度增大,最终促使 块状 γ_m 相的形成。相关研究表明,TiAl合金在 α 单 相区不同冷速淬火能够改变片层组织的形貌特征,获 得的热处理显微组织中可以观察到块状组织和羽毛组 织^[9]。EDS分析结果表明:枝晶间偏析的AI含量明显偏 高,但稍低于铸态凝固组织中枝晶间偏析的AI含量; 而枝晶上存在白色脉络状的相AI含量明显偏低,Cr和 Nb元素仍稍高于名义成分,但均稍高于铸态凝固组织

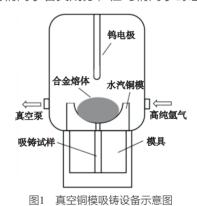
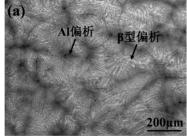
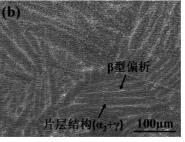




Fig. 1 Schematic sketch of suction casting furnace

(a) 低倍

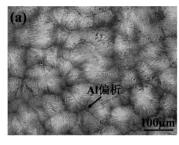
(b) 高倍

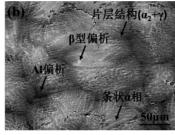
图2 铸态钮扣锭Ti-45Al-2Cr-2Nb合金凝固组织形貌

Fig. 2 Microstructure of as-cast Ti-45Al-2Cr-2Nb alloy button ingot

中白色脉络状相的各元素的含量, 条状 α 相的Al含量 接近名义成分,块状γ_m相的Al含量略高于名义成分。 具体各相的各元素原子百分含量,如表1所示。

2.4 凝固组织相组成分析


图4为铸态和吸铸条件下Ti-45Al-2Cr-2Nb合金凝固 组织的XRD衍射图谱。可以看出,两者并没有明显差 异,相组成均为α,相和γ相(图4a)。为进一步观察 衍射峰的变化,取38°~40°之间的衍射图谱进行对比 分析发现,随着冷却速率的提高, α_1 相(002)面和 γ相(111)面的衍射峰一定程度地向高角度偏移(图 4b)。这表明由于铜模的强急冷作用,凝固过程中存 在一定的内应力,从而诱发晶格畸变,造成晶格参数 的减小, 而这种晶格畸变会进一步导致晶面间距减 小, 晶格压缩引起衍射峰一定程度地向高角度偏移。


已有研究表明急冷快速凝固过程中会造成凝固收缩从 而引发巨大的凝固内应力[10-12],这与试验XRD衍射图谱 的分析结果一致。

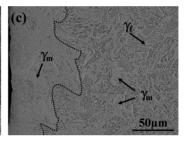

表1 铸态和吸铸Ti-45Al-2Cr-2Nb合金中各区域的 元素原子百分含量

Table 1 Atomic percent of every areain as-cast and suctioncast microstructures of Ti-45Al-2Cr-2Nb alloy

区域	Ti	Al	Cr	Nb
铸态枝晶偏析区	47.87	47.27	2.79	2.08
铸态β型偏析区	53.17	42.90	1.86	2.08
吸铸枝晶偏析区	50.04	45.92	2.80	1.25
吸铸β型偏析区	51.82	43.52	2.20	2.45
条状α相	51.45	44.56	1.79	2.20
块状γ㎜相	50.06	45.84	2.47	1.64

(a) 糊状区凝固组织形貌

(b) 糊状区高倍凝固组织形貌

(c) 表面急冷区凝固组织形貌

图3 真空吸铸Ti-45Al-2Cr-2Nb合金(Φ 6 mm × 80 mm)棒状试样的凝固组织 Fig. 3 Microstructure of Ti-45Al-2Cr-2Nb alloy (Φ 6 mm \times 80 mm) under vacuum suction-cast condition

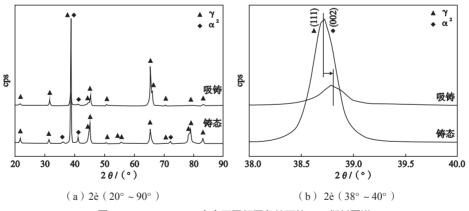


图4 Ti-45Al-2Cr-2Nb合金不同凝固条件下的XRD衍射图谱 Fig. 4 XRD patterns of Ti-45Al-2Cr-2Nb alloy under different solidification conditions

3 结论

- (1) 铸态Ti-45Al-2Cr-2Nb合金凝固路径是以β 相为初生相的单一β相凝固,Al当量计算结果为44.2 at.%, 仍为单一β相凝固合金, 与凝固组织观察结果一 致,其主要相组成为 α ,相和 γ 相。
- (2) 相比铸态组织,真空吸铸Ti-45Al-2Cr-2Nb 合金凝固组织明显细化,凝固组织由244 μm细化至
- 96 μm, 同时由于铜模强烈的急冷作用, 降低了凝固 过程中枝晶间的AI偏析,胞状枝晶上仍存在白色脉络 状的 β 型偏析和残余的条状 α 相,一定程度上也抑制 了片层结构($\alpha_2 + \gamma$)。
- (3)在表面急冷区观察到块状 y 相(y m)形 成,块状γ "相的区域厚度约为62 μ m。随着距离表面 急冷区增大,冷却速率减小,该区域存在大量的羽毛 组织 (γ_f) 和少量的 γ_m 相。

参考文献:

- [1] ZHANG Y T, CHI Y, HU C Q. Phase-field simulation of solidification dendritic segregation in Ti-45Al alloy [J]. China Foundry, 2017, 14 (3): 184-187.
- [2] 杨锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 2(51): 129-147.
- [3] BAO C, ZHANG S, REN Y, et al. Research progress on refractory composition and deformability of shell molds for TiAl alloy castings [J]. China Foundry, 2018, 15 (1): 1–10.
- [4] LUO L S, LIU T, LI K, et al. Microstructures, micro-segregation and solidification path of directionally solidified Ti-45Al-5Nb alloy [J]. China Foundry, 2016, 13 (2): 107–113.
- [5] LIU Y, HU R, ZHANG TB, et al. Dendritic growth and microstructure evolution with different cooling rates in Ti48Al2Cr2Nb alloy [J]. Journal of Materials Engineering and Performance, 2016, 25: 38–45.
- [6] LIU Y, HU R, KOU H C, et al. Solidification characteristics of high Nb-containing γ -TiAl-based alloys with different aluminum contents [J]. Rare Metals, 2015, 34 (6): 381–386.
- [7] LIU Y, HU R, KOU H C, et al. A mixture of massive and feathery microstructures of Ti48Al2Cr2Nb alloy by high undercooled solidification [J]. Materials Characterization, 2015, 100: 104–107.
- [8] KASTENHUBER M, KLEIN T, RASHKOVA B, et al. Phase transformations in a β -solidifying γ -TiAl based alloy during rapid solidification [J]. Intermetallics, 2017, 91: 100–109.
- [9] DEY S R, HAZOTTE A, BOUZY E. Crystallography and phase transformation mechanisms in TiAl-based alloys-A synthesis [J]. Intermetallics, 2009, 17 (12): 1052–1064.
- [10] XU X L, CHEN Y Z, LIU F. Study of microstrain in rapidly solidified structures of hypercooled Co80Pd20 alloys [J]. Materials Science and Technology, 2013, 29 (1): 117–120.
- [11] YANG Y S, GUO J J, TONG W H. Effect of cooling rate on solidification microstructures in AISI 304 stainless steel [J]. Materials Science and Technology, 2008, 24 (8): 941–944.
- [12] KENEL C, LEINENBACH C. Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys [J]. Journal of Alloys and Compounds, 2015, 637: 242–247.

Solidification Behavior of TiAl-Based Alloy Prepared by Cu-Mold Vacuum Suction Casting

LIU Yi¹, MIN Zhi-yu¹, LI Xiao-lei², AN Jun-chao¹, ZHANG Wei¹

(1. School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, Henan, China; 2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072, Shaanxi, China)

Abstract:

The Ti-45Al-2Cr-2Nballoy sample was achieved by Cu-mold vacuum suction casting. The microstructure in different area, component distribution and phase constitution were studied by means of scanning electron microscopy (SEM), energy dispersive spectroscope (EDS) and X-ray diffraction(XRD), respectively, and compared with as-cast one. The results indicate that the microstructures of as-cast and suction-casting alloysboth mainly consist of α_2 and γ phase. The as-cast microstructure observation is consistent with the calculation result of Al-equivalent. The primary phase is β phase and the solidification structure is the single β -phase. Compared with the as-cast microstructure, the microstructure of vacuum suction casting alloy is apparently refined from 244 μ m to 96 μ m. At the same time, the solidification segregation was reduced and the morphology of dendrite cell was presented. White veins β -segregation and residual striped α -phase were shown inside dendrites. γ_m and γ_f were observed in surface quenching zone. Thickness of region of γ_m phase was about 62 μ m.

Key words:

suction casting; Al-equivalent; primary phase; solidification segregation; lattice distortion